Moltiplicatori HW e ALU

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Moltiplicatori HW e ALU"

Transcript

1 Moltiplicatori HW e ALU Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti: Appendice B5 prima parte. Per approfondimenti e HW della moltiplicazione consultare il Fummi. 1/37 Sommario Moltiplicatori ALU /37 1

2 Moltiplicazione mediante shift Lo shift di un numero a dx, di k cifre, corrisponde ad una divisione per la base elevata alla k-esima potenza. Lo shift di un numero a sx, di k cifre, corrisponde ad una moltiplicazione per la base elevata alla k-esima potenza. Esempio: / 10 = = ( x x x 10 0 ) / 10 1 = ( x x x 10 0 ) x 10-1 = ( x 10 x x 10 1 x x 10 0 x 10-1 ) = ( x x x 10-1 ) = 1.3 cvd. Esempio: 3 / 4 = 5, 75 => / 100 = (1x 4 + 0x 3 + 1x + 1x 1 + 1x 0 ) x - = (1x + 0x 1 + 1x 0 + 1x x - ) = 5,75 cvd. 3/37 Prodotti parziali Moltiplicazione decimale Moltiplicando Moltiplicatore 7 8 x 4 3 = prodotto 78 x 43 = 78 x (4 x 10 + x x10 0 ) = 78 x (4 x 10 ) + 78 x ( x 10 ) + 78 x (3 x 10 0 ) Somma dei prodotti parziali 4/37

3 x = Moltiplicazione binaria Moltiplicando Moltiplicatore Somma parziale prodotto x = prodotti parziali 5/37 Prodotti parziali Riporto Somma parziale Moltiplicazione binaria Moltiplicando Moltiplicatore Prodotto x 7 x = 11 = = = > /37 3

4 P = P 0 + P 1 + P = = (P 0 +P 1 ) + P = = S 0 + P Somme parziali e prodotto Moltiplicando Moltiplicatore Somma parziale prodotto x = prodotti parziali 7/37 Moltiplicazione binaria (su 4 bit) Prodotti parziali (AND) Somma parziale (Sommatori) Prodotto Moltiplicando Moltiplicatore x x = 5 10 = *1 * * 0 * 1 = *1* = Il prodotto parziale è = Moltiplicando incolonnato opportunamente 0 8/37 4

5 La moltiplicazione binaria Possiamo vederla come: Un primo stadio in cui si mette in AND ciascun bit del moltiplicatore con il moltiplicando. Un secondo stadio in cui si effettuano le somme (full adder) dei bit sulle righe contenenti i prodotti parziali. 9/37 La matrice dei prodotti parziali Prodotti parziali In binario i prodotti parziali sono degli AND. Sulla linea tanti AND quanto è la lunghezza di A Tanti prodotti parziali quanto è la lunghezza di B 10/37 5

6 La matrice dei prodotti parziali Prodotti parziali b 0 (a 3 a a 1 a 0 ) genera P 0 b 1 (a 3 a a 1 a 0 ) genera P 1 b (a 3 a a 1 a 0 ) genera P b 3 (a 3 a a 1 a 0 ) genera P /37 Il circuito che effettua i prodotti Prodotti parziali b k agisce come interruttore, facendo passare 0 o A 1/37 6

7 Somma delle prime righe dei prodotti parziali p 4 p 3 p Somma dei primi prodotti parziali: Aggiunge il terzo prodotto parziale: p 1 HA e FA non sono equivalenti per i diversi cammini critici. 13/ x 13 x = 11 = = > Somma della terza riga I primi due prodotti parziali sono sommati dalla prima batteria di sommatori. Ogni altro prodotto parziale è sommato da un ulteriore batteria di sommatori x 13 x = 11 = = > /37 7

8 Circuito completo della somma dei prodotti parziali N-1 batterie di sommatori a b 0 P 0 +P 1 -> S 0 a 0 b S 0 +P -> S 1 S 1 +P 3 ->P Problema: overflow: A e B su 3 bit => P su 64 bit. 15/37 Valutazione della complessità Complessità: Half Adder: porte Full Adder: 5 porte a b 0 a 0 b Stadio prodotti (AND): A su N bit B su M bit N * M porte AND Stadio Somme: N sommatori per linea M-1 righe Numero linee Se N = M = 4 numero totale di porte a ingressi = 60 Numero FA per linea CO Tot = (M-1) * [(N-1) * * ] M * N 16/37 Numero HA per linea Primo HA 1a linea Prodotti Parziali 8

9 Valutazione del cammino critico 1 Cammini critici: Half Adder: Somma 1 porta Riporto 1 porta Full Adder: Somma - porte Riporto - 3 porte Gli AND operano in parallelo: ritardo Se N = M = 4 cammino critico totale = 1 CC Tot = 8 + (M-4)*(+3) /37 Osservazioni Cammini critici: Half Adder: Somma 1 porta Riporto 1 porta Full Adder: Somma - porte Riporto - 3 porte Gli AND operano in parallelo: ritardo 1. Architettura modulare, ogni schiera di sommatori lavora sul risultato della schiera superiore e fornisce l input alla schiera inferiore Quanto si guadagna sostituendo ai sommatori a propagazione di riporto sommatori ad anticipazione di riporto? 18/37 9

10 Sommario Moltiplicatori ALU 19/37 Funzione della ALU E integrata nel processore, all inizio degli anni 90 è stata rivoluzionaria la sua introduzione con il nome di co-processore matematico. Esegue le operazioni aritmetico-logiche. E costituita da circuiti combinatori. Utilizza i blocchi di base già visti. Opera su parole (MIPS 3 bit). Le ALU non compaiono solamente nei micro-processori. 0/37 10

11 Problematiche di progetto Velocità (Riporto). Costo. Precisione. Affidabilità Consumo. 1/37 Struttura a livelli di una ALU SEL: Selettore dell operazione a k Parte di calcolo Parte di selezione s k b k Altre informazioni Flusso dell elaborazione /37 11

12 Progettazione della ALU 1 bit a b AND, OR Parte di calcolo Parte di selezione SEL s a b a AND b a OR b SEL SEL = 0 s = AND(a,b) SEL= 1 s = OR(a,b) a b s 1 porta AND 1 porta OR 1 Mux 3/37 AND OR SOMMA La nuova struttura della ALU 1 bit a SEL b s r out 4/37 Perchè SEL non viene messo in ingresso? 1

13 I cammini critici all interno della ALU AND OR a AND b a OR b s = a AND b s = a OR b FA a + b s = a + b Inizio calcolo Dt Dt Dt Dt Dt Dt t 5/37 Valutazione ALU a 1 bit AND OR SOMMA SEL Complessità 1 livello (calcolo): 5+ = 7 Complessità livello (mux): 3*1+(3+*) = 10 (Decoder + AND (semaforo) + OR (congiunzione)) Complessità totale: 7+10 = 17 a b s CC 1 livello: per s out, 3 per r out CC livello: 4 (1 Decoder + (1 AND (semaforo) + OR (congiunzione) CC complessivo: (calcolo) + 1 AND (semaforo)+ (OR selezione) Il CC del decoder non viene contato: r out gli AND del decoder interni al mux sono attivati in parallelo ai circuiti di calcolo 6/37 13

14 Sommario ALU ad 1 bit ALU a 3 bit Comparazione, Overflow, Test di uguaglianza Tecnologie di costruzione di una ALU 7/37 Come collegare le ALU ad 1 bit? ALU a 3 bit SEL Flusso di calcolo Perchè non si può parallelizzare? 8/37 14

15 Valutazione ALU a 3 bit SEL Complessità: 17 x 3 = 544 porte logiche Cammino critico: 3 x 31 (propagazione riporti) + (s 31 ) + 1 (semaforo ultimo mux) + (congiunzione ultimo mux) = 98 porte logiche per 4 operazioni 9/37 Sottrazione In complemento a diventa un addizione: a b = a + b + 1 = 1 + a + b Esempio: s = 3 4; su 3 bit 3 -> > 100 in complemento a 100 = -1 -> 111 in complemento a 111 Posso scrivere il numero negativo in complemento a come somma: 4 -> 100 numero positivo: _ b Passo I Complemento a complemento a 1: b+ Passo II Sommo + 1 1= sommo 1: 1= Risultato Complemento a 100 risultato -b _ Posso quindi scrivere: -b = b /37 15

16 Sottrazione _ In complemento a diventa un addizione: a b = a + b + 1 Serve: a) un inverter (NOT). b) la costante 1 a) y Iff invertib y =!b Aggiunge porte logiche al cammino critico. b) Da dove prendo la costante 1? 31/37 Sottrazione - ALU 0 0 SEL = add a 0 s 0 b 0 FA r in (0) = InvertiB = 1 se sottrazione r out 0 (occorre utilizzare un full adder anche per il bit meno significativo con r in0 = 1). Effettuo quindi la somma di 1 con la somma della prima coppia di bit. 3/37 16

17 Sottrazione - ALU i AND OR SOMMA SOTTRAZIONE a i r in (i) SEL s i b i FA r in (i) = r out (i-1) i = 1,,3,...31 i 0 InvertiB = 1 se sottrazione r out (i) 33/37 Operazioni particolari - ALU i r in (i) SEL E possibile programmare questa ALU per eseguire a i a AND!b s i oppure: b i a OR!b FA InvertiB = 1 SEL = AND, OR La parte di calcolo è comunque separata dalla parte di selezione 34/37 r out (i) 17

18 r in (0) = InvertiB = 1 se sottrazione Sottrazione: ALU a 3 bit NegaB SEL AND OR SOMMA SOTTRAZIONE From_UC SEL r 0 InvertiB And Or Somma Sottr. And 0 0 Or 0 0 Add 0 0 Add 1 1 InvertiB e r 0 sono lo stesso segnale, si può ancora ottimizzare. r in (0) entra solo in ALU 0 InvertiB entra in tutte le ALU i 35/37 ALU a 3 bit con CLA Come realizzare una ALU a 3 bit con: Porte OR Porte AND CLA a 4 bit? Definire complessità e cammino critico Notate che l inverter su b aggiunge complessità e cammino critico. 36/37 18

19 Sommario Moltiplicatori ALU 37/37 19

Sommatori e Moltiplicatori

Sommatori e Moltiplicatori Sommatori e Moltiplicatori Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti: Appendice C5 prima parte. Per approfondimenti

Dettagli

La ALU. Prof. Alberto Borghese Dipartimento di Scienze dell Informazione Università degli Studi di Milano

La ALU. Prof. Alberto Borghese Dipartimento di Scienze dell Informazione Università degli Studi di Milano La ALU Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento sul Patterson: sezione C.5 1/38 Sommario ALU ad 1 bit ALU a 3

Dettagli

Sommatori e Moltiplicatori. Sommario

Sommatori e Moltiplicatori. Sommario Sommatori e Moltiplicatori Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimenti: B.5 sul Patterson, per i moltiplicatori HW,

Dettagli

Sommatori e Moltiplicatori

Sommatori e Moltiplicatori Sommatori e Moltiplicatori Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimenti: B.5 sul Patterson, per i moltiplicatori HW,

Dettagli

Circuiti combinatori notevoli

Circuiti combinatori notevoli Architettura degli Elaoratori e delle Reti Lezione 5 Circuiti cominatori notevoli F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 5 1 Comparatore! Confronta parole

Dettagli

Lezione 7 Sommatori e Moltiplicatori

Lezione 7 Sommatori e Moltiplicatori Architettura degli Elaboratori e delle Reti Lezione 7 Sommatori e Moltiplicatori Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 /36 Sommario

Dettagli

Lezione 7 ALU: Moltiplicazione e divisione

Lezione 7 ALU: Moltiplicazione e divisione Architettura degli Elaboratori e delle Reti Lezione 7 ALU: Moltiplicazione e divisione F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 1/34 Sommario! Sommatori

Dettagli

Esercitazione del 23/03/ Soluzioni

Esercitazione del 23/03/ Soluzioni Esercitazione del 23/03/2006 - Soluzioni ) Addizionatore Half Adder (senza riporto in ingresso): A B S R 0 0 0 0 0 0 0 0 0 S = A B R = A B A B Half Adder S R A S R B N.Porte = 2 Cammino Critico S =, R

Dettagli

Esercitazione del 17/03/2005

Esercitazione del 17/03/2005 Esercitazione del 7/03/2005 ) ddizionatore Half dder (senza riporto in ingresso): 0 0 0 0 0 0 0 0 0 = = Half dder N.Porte = 2 Cammino Critico =, = 2) ddizionatore Full dder ( con riporto in ingresso ):

Dettagli

Firmware Division & Floating pointer adder

Firmware Division & Floating pointer adder Firmware Division & Floating pointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5 1/47

Dettagli

Componenti notevoli combinatori

Componenti notevoli combinatori Corso di Laurea in Informatica Componenti notevoli combinatori Architettura dei Calcolatori Prof. Andrea Marongiu andrea.marongiu@unimore.it Anno accademico 2018/19 Demultiplexer / Decoder (1/2) Il demultiplexer

Dettagli

Firmware Multiplier. Sommario

Firmware Multiplier. Sommario Firmware Multiplier Prof. lberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: B.6 & 3.4 /33 Il moltiplicatore firmware Sommario

Dettagli

Firmware Multiplier. Sommario

Firmware Multiplier. Sommario Firmware Multiplier Prof. lberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: B.6 & 3.4 /33 Sommario Il moltiplicatore firmware

Dettagli

Firmware Division & Floating gpointer adder

Firmware Division & Floating gpointer adder Firmware Division & Floating gpointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it it Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5

Dettagli

Architetture aritmetiche

Architetture aritmetiche Architetture aritmetiche Sommatori: : Full Adder, Ripple Carry Sommatori: Carry Look-Ahead Ahead, Carry Save, Add/Subtract Moltiplicatori: Combinatori, Wallace,, Sequenziali Circuiti per aritmetica in

Dettagli

Floating pointer adder & Firmware Division. Sommario

Floating pointer adder & Firmware Division. Sommario Floating pointer adder & Firmware Division Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5 1/43

Dettagli

Il Livello Logico-Digitale. Blocchi funzionali combinatori

Il Livello Logico-Digitale. Blocchi funzionali combinatori Il Livello Logico-Digitale Blocchi funzionali combinatori 21-10-2015 Blocchi funzionali combinatori Esiste una ben nota e ormai stabilizzata libreria di blocchi funzionali predefiniti di tipo combinatorio

Dettagli

Aritmetica binaria e circuiti aritmetici

Aritmetica binaria e circuiti aritmetici Aritmetica binaria e circuiti aritmetici Architetture dei Calcolatori (lettere A-I) Addizioni binarie Le addizioni fra numerali si effettuano cifra a cifra (come in decimale) portando il riporto alla cifra

Dettagli

ALU + Bistabili. Sommario

ALU + Bistabili. Sommario ALU + Bistabili Prof. Alberto Borghese Dipartimento di Informatica alberto.borghese@unimi.it Università degli Studi di Milano Riferimento Patterson: sezioni B.7 & B.8. 1/39 Sommario ALU: Comparazione,

Dettagli

Lezione 7 Sommatori e Moltiplicatori

Lezione 7 Sommatori e Moltiplicatori Architettura degli Elaboratori e delle Reti Lezione 7 Sommatori e Moltiplicatori Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 1/36 Sommario!

Dettagli

Firmware Division. Sommario

Firmware Division. Sommario Firmware Division Prof. Alberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: 3.4, 3.5 1/33 Sommario Divisione intera 2/33

Dettagli

Progetto di Circuiti Aritmetici

Progetto di Circuiti Aritmetici Progetto di Circuiti Aritmetici Maurizio Palesi Maurizio Palesi 1 Introduzione Caratteristiche principali di valutazione Velocità Valutata per il caso peggiore Costo Precisione Es., operazioni in virgola

Dettagli

ALU + Bistabili. Prof. Alberto Borghese Dipartimento di Informatica Università degli Studi di Milano

ALU + Bistabili. Prof. Alberto Borghese Dipartimento di Informatica Università degli Studi di Milano ALU + Bistabili Prof. Alberto Borghese Dipartimento di Informatica alberto.borghese@unimi.it Università degli Studi di Milano Riferimento Patterson: sezioni B.7 & B.8. 1/39 Sommario ALU: Comparazione,

Dettagli

Firmware Division, UC & Floating gpointer adder

Firmware Division, UC & Floating gpointer adder Firmware Division, UC & Floating gpointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it it Università degli Studi di Milano Riferimenti sul Patterson, 5a Ed.:

Dettagli

Progetto di Circuiti Aritmetici

Progetto di Circuiti Aritmetici Progetto di Circuiti Aritmetici Maurizio Palesi Maurizio Palesi 1 Introduzione Caratteristiche principali di valutazione Velocità Valutata per il caso peggiore Costo Precisione Es., operazioni in virgola

Dettagli

Firmware Division, UC & Floating pointer adder

Firmware Division, UC & Floating pointer adder Firmware Division, UC & Floating pointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson, 5a Ed.:

Dettagli

Firmware Division. Sommario

Firmware Division. Sommario Firmware Division Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: 3.4, 3.5 1/34 Sommario Divisione

Dettagli

Architettura degli Elaboratori. Davide Bertozzi Dipartimento di Ingegneria Università of Ferrara. Componenti Combinatori Standard

Architettura degli Elaboratori. Davide Bertozzi Dipartimento di Ingegneria Università of Ferrara. Componenti Combinatori Standard Architettura degli Elaboratori Davide Bertozzi Dipartimento di Ingegneria Università of Ferrara Componenti Combinatori Standard Riassunto: Semplificazione Primo procedimento: utilizzo di tecniche algebriche

Dettagli

Firmware Division. Prof. Alberto Borghese Dipartimento di Informatica Università degli Studi di Milano

Firmware Division. Prof. Alberto Borghese Dipartimento di Informatica Università degli Studi di Milano Firmware Division Prof. Alberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: 3.4, 3.5 1/36 Sommario Divisione intera Circuiti

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri CEFRIEL Consorzio per la Formazione e la Ricerca in Ingegneria dell Informazione Aritmetica dei calcolatori Rappresentazione dei numeri naturali e relativi Addizione a propagazione di riporto Addizione

Dettagli

Firmware Division. Prof. Alberto Borghese Dipartimento di Informatica Università degli Studi di Milano

Firmware Division. Prof. Alberto Borghese Dipartimento di Informatica Università degli Studi di Milano Firmware Division Prof. Alberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: 3.4, 3.5 1/36 Sommario Divisione intera Circuiti

Dettagli

Unita aritmetica e logica. Input e output della ALU. Rappresentazione degli interi. Rappresentazione in modulo e segno. Aritmetica del calcolatore

Unita aritmetica e logica. Input e output della ALU. Rappresentazione degli interi. Rappresentazione in modulo e segno. Aritmetica del calcolatore Unita aritmetica e logica Aritmetica del calcolatore Capitolo 9 Esegue le operazioni aritmetiche e logiche Ogni altra componente nel calcolatore serve questa unita Gestisce gli interi Puo gestire anche

Dettagli

Circuiti di base e ALU. Lorenzo Dematte

Circuiti di base e ALU. Lorenzo Dematte Circuiti di base e ALU Lorenzo Dematte (dematte@ieee.org) Multiplexer Multiplexer Decodificatore demux CPU ALU: Arithmetic Logic Unit CU: Control Unit Aritmetica con reti logiche I circuiti realizzano

Dettagli

Moltiplicazione e ALU

Moltiplicazione e ALU Moltiplicazione e ALU Docente teoria: prof. Federico Pedersini (https://homes.di.unimi.it/pedersini/ae-inf.html) Docente laboratorio: Matteo Re (https://homes.di.unimi.it/re/arch1-lab-2017-2018.html) 1

Dettagli

Unità Aritmetico-Logica

Unità Aritmetico-Logica Unità Aritmetico-Logica A ritmethic L ogic U nit E l unità che esegue le operazioni aritmetiche e le operazioni logiche AND e OR 1-bit ALU : è una componente dell ALU che produce un singolo bit sui 32

Dettagli

Es. 05. Addizionatori (Half Adder, Full Adder); sommatori a n bit (con e. complemento a due e sottrazione; overflow.

Es. 05. Addizionatori (Half Adder, Full Adder); sommatori a n bit (con e. complemento a due e sottrazione; overflow. Es. 05 Addizionatori (Half Adder, Full Adder); sommatori a n bit (con e senza riporto); conversione in complemento a due e sottrazione; overflow. Es. 1 Si scriva la tabella di verità per un addizionatore

Dettagli

Reti combinatorie. Reti combinatorie (segue)

Reti combinatorie. Reti combinatorie (segue) Reti combinatorie Sommatore Sottrattore Reti sequenziali Generatore di sequenze Riconoscitore di sequenze Reti combinatorie PROGRAMMAZIONE Il programmatore riporta le istruzioni che il calcolatore dovrà

Dettagli

Reti combinatorie (segue) Reti combinatorie. Lezione 2. Architettura degli Elaboratori A. Sperduti 1

Reti combinatorie (segue) Reti combinatorie. Lezione 2. Architettura degli Elaboratori A. Sperduti 1 Reti combinatorie Reti sequenziali Sommatore Sottrattore Generatore di sequenze Riconoscitore di sequenze PROGRAMMAZIONE Il programmatore riporta le istruzioni che il calcolatore dovrà eseguire, in un

Dettagli

Moduli Combinatori. Moduli Combinatori. Corso di Architetture degli Elaboratori

Moduli Combinatori. Moduli Combinatori. Corso di Architetture degli Elaboratori Moduli Combinatori Moduli Combinatori Corso di Architetture degli Elaboratori Coder Circuito codificatore x x z z k n=2 k x n La linea su cui si ha valore viene codificata in uscita mediante log 2 n bit

Dettagli

Logica binaria. Cap. 1.1 e 2.1 dispensa

Logica binaria. Cap. 1.1 e 2.1 dispensa Logica binaria Cap.. e 2. dispensa Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ Logica binaria 2 / 24 Rappresentazione

Dettagli

Aritmetica dei calcolatori. La rappresentazione dei numeri

Aritmetica dei calcolatori. La rappresentazione dei numeri Aritmetica dei calcolatori Rappresentazione dei numeri naturali e relativi Addizione a propagazione di riporto Addizione veloce Addizione con segno Moltiplicazione con segno e algoritmo di Booth Rappresentazione

Dettagli

Aritmetica dei calcolatori

Aritmetica dei calcolatori Aritmetica dei calcolatori Rappresentazione dei numeri naturali e relativi Addizione a propagazione di riporto Addizione veloce Addizione con segno Moltiplicazione con segno e algoritmo di Booth Rappresentazione

Dettagli

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Circuiti Addizionatori

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Circuiti Addizionatori Reti Logiche 1 Prof. B. Buttarazzi A.A. 2009/2010 Circuiti Addizionatori Sommario Circuiti addizionatori Half-Adder Full-Adder CLA (Carry Look Ahead) 21/06/2010 Corso di Reti Logiche 2009/10 2 Addizionatori

Dettagli

Architettura dei sistemi di elaborazione: La CPU: Architettura (parte 2)

Architettura dei sistemi di elaborazione: La CPU: Architettura (parte 2) Architettura dei sistemi di elaborazione: La CPU: Architettura (parte 2) ALU L unità aritmetico logica o ALU rappresenta l apparato muscolare di un calcolatore, il dispositivo cioè che esegue le operazioni

Dettagli

Arithmetic and Logic Unit e moltiplicatore

Arithmetic and Logic Unit e moltiplicatore Arithmetic and Logic Unit e moltiplicatore M. Favalli Engineering Department in Ferrara (ENDIF) ALU - multiplier Analisiesintesideicircuitidigitali 1 / 34 Sommario 1 Arithmetic and Logic Unit - ALU 2 Moltiplicatore

Dettagli

PSPICE simulazione di circuiti digitali Flip Flop M/S, Moltiplicatore parallelo, Memoria SRAM, sommatore, comparatore

PSPICE simulazione di circuiti digitali Flip Flop M/S, Moltiplicatore parallelo, Memoria SRAM, sommatore, comparatore PSPICE simulazione di circuiti digitali Flip Flop M/S, Moltiplicatore parallelo, Memoria SRAM, sommatore, comparatore Laboratorio di Architettura degli Elaboratori - A.A. 24/25 Il flip flop di tipo Master/Slave

Dettagli

I sommatori S R. R in. Full. Adder

I sommatori S R. R in. Full. Adder I sommatori 1) ddizionatore Half dder (senza riporto in ingresso): 0 0 0 0 0 1 1 1 Half dder = = N.Porte = 2 Cammino Critico = 1, = 1 2) ddizionatore Full dder ( con riporto in ingresso ): in out 0 0 0

Dettagli

Logica binaria. Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna

Logica binaria. Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna Logica binaria Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ Logica binaria 2 Rappresentazione dell'informazione I calcolatori

Dettagli

Architettura degli Elaboratori e Laboratorio. Matteo Manzali Università degli Studi di Ferrara Anno Accademico

Architettura degli Elaboratori e Laboratorio. Matteo Manzali Università degli Studi di Ferrara Anno Accademico Architettura degli Elaboratori e Laboratorio Matteo Manzali Università degli Studi di Ferrara Anno Accademico 2016-2017 Algebra booleana L algebra booleana è un particolare tipo di algebra in cui le variabili

Dettagli

Es. 8 Moltiplicazione e divisione tra numeri interi (Firmware)

Es. 8 Moltiplicazione e divisione tra numeri interi (Firmware) Es. 8 Moltiplicazione e divisione tra numeri interi (Firmware) Circuito della moltiplicazione Moltiplicando (A), 32 bit 32 32 ALU 32 Operazione: P = A x B 32 add P Prodotto (P), 63 32 bit Moltiplicatore

Dettagli

Porte logiche di base. Cenni circuiti, reti combinatorie, reti sequenziali

Porte logiche di base. Cenni circuiti, reti combinatorie, reti sequenziali Porte logiche di base Cenni circuiti, reti combinatorie, reti sequenziali NOT AND A R A B R OR A R B Quindi NAND o NOR sono complete circuiti con solo porte NAND o solo porte NOR. Reti combinatorie Rete

Dettagli

Architettura degli elaboratori CPU a ciclo singolo

Architettura degli elaboratori CPU a ciclo singolo Architettura degli elaboratori CPU a ciclo singolo Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimento sul Patterson: capitolo

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori Moltiplicazione e divisione tra numeri interi: algoritmi e circuiti slide a cura di Salvatore Orlando, Marta Simeoni, Andrea Torsello Operazioni aritmetiche e logiche Abbiamo visto che le ALU sono in grado

Dettagli

Es Soluzioni S = A B. R in. Full. Adder

Es Soluzioni S = A B. R in. Full. Adder Es. 5 - oluzioni 1) ddizionatore Half dder (senza riporto in ingresso): 1 1 1 Half dder = = N.Porte = 2 Cammino Critico = 1, = 1 2) ddizionatore Full dder ( con riporto in ingresso ): in out 1 1 1 1 1

Dettagli

Circuiti combinatori notevoli

Circuiti combinatori notevoli Circuiti combinatori notevoli Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimenti: Sezione C3. 1/33 Sommario Implementazione

Dettagli

Circuti AND, OR, NOT Porte logiche AND

Circuti AND, OR, NOT Porte logiche AND Circuti AND, OR, NOT Porte logiche AND OR NOT A B C Esempio E = ~((AB) + (~BC)) E NAND e NOR NAND (AND con uscita negata): ~(A B) NOR (OR con uscita negata): ~(A+B) Si può dimostrare che le operazioni

Dettagli

Elementi di Informatica

Elementi di Informatica Elementi di Informatica Luigi Catuogno Operazioni aritmetiche in binario 1 omma e prodotto di cifre binarie + 0 1 0 0 1 1 1 10 0 1 0 0 0 1 0 1 omma tra numeri binari (senza segno) 1010 + 0011 = 1 1 10

Dettagli

Componenti di un sistema digitale

Componenti di un sistema digitale Componenti di un sistema digitale Il Multiplexer 2x a b Dispositivo che permette di selezionare uno degli n ingressi e presentarlo in uscita Con n linee di ingresso un multiplexer richiede un numero di

Dettagli

Addizionatori: metodo Carry-Lookahead. Costruzione di circuiti combinatori. Standard IEEE754

Addizionatori: metodo Carry-Lookahead. Costruzione di circuiti combinatori. Standard IEEE754 Addizionatori: metodo Carry-Lookahead Costruzione di circuiti combinatori Standard IEEE754 Addizionatori Il circuito combinatorio che implementa l addizionatore a n bit si basa su 1-bit adder collegati

Dettagli

Circuiti combinatori

Circuiti combinatori Laboratorio di Architetture degli Elaboratori I Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Circuiti combinatori Nicola Basilico Dipartimento di Informatica Via Comelico

Dettagli

Esercitazione 02. Circuiti Aritmetici. Gianluca Brilli 09/04/19 ARCHITETTURA DEI CALCOLATORI 1

Esercitazione 02. Circuiti Aritmetici. Gianluca Brilli 09/04/19 ARCHITETTURA DEI CALCOLATORI 1 Esercitazione 02 Circuiti Aritmetici Gianluca Brilli gianluca.brilli@unimore.it 09/04/19 ARCHITETTURA DEI CALCOLATORI 1 Esercizio 01 Creare un nuovo sottocircuito chiamato "adder_1", e implementarvici

Dettagli

Esercitazioni di Reti Logiche

Esercitazioni di Reti Logiche Esercitazioni di Reti Logiche Sintesi di Reti Combinatorie & Complementi sulle Reti Combinatorie Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Universita degli Studi di Bologna Anno Academico

Dettagli

Fondamenti di Informatica B

Fondamenti di Informatica B Fondamenti di Informatica B Lezione n.9 Alberto Broggi Gianni Conte A.A. 2005-2006 Fondamenti di Informatica B DESCRIZIONE E PROGETTO A LIVELLO RTL ESEMPIO DI SISTEMA A LIVELLO RTL: IL MOLTIPLICATORE BINARIO

Dettagli

Università degli Studi di Cassino

Università degli Studi di Cassino Corso di Reti combinatorie Anno Accademico 27/28 Francesco Tortorella Reti combinatorie una rete combinatoria è un circuito logico avente n ingressi (x,x 2,,x n ) ed m uscite (y,y 2,,y m ), ciascuno dei

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici

Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e

Dettagli

senza stato una ed una sola

senza stato una ed una sola Reti Combinatorie Un calcolatore è costituito da circuiti digitali (hardware) che provvedono a realizzare fisicamente il calcolo. Tali circuiti digitali possono essere classificati in due classi dette

Dettagli

Reti Combinatorie: sintesi

Reti Combinatorie: sintesi Reti Combinatorie: sintesi Sintesi di reti combinatorie Una rete combinatoria realizza una funzione di commutazione Data una tabella di verità è possibile ricavare più espressioni equivalenti che la rappresentano.

Dettagli

Esercitazioni di Reti Logiche. Lezione 4

Esercitazioni di Reti Logiche. Lezione 4 Esercitazioni di Reti Logiche Lezione 4 Progettazione dei circuiti logici combinatori Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Procedura di analisi dei circuiti combinatori. Procedura di sintesi

Dettagli

Codifica e aritmetica binaria

Codifica e aritmetica binaria Codifica e aritmetica binaria Corso ACSO prof. Cristina Silvano, Politecnico di Milano Codifica binaria dell informazione Il calcolatore utilizza un alfabeto binario: usiamo dispositivi elettronici digitali

Dettagli

CPU a singolo ciclo. Lezione 18. Sommario. Architettura degli Elaboratori e delle Reti

CPU a singolo ciclo. Lezione 18. Sommario. Architettura degli Elaboratori e delle Reti Architettura degli Elaboratori e delle Reti Lezione 18 CPU a singolo ciclo Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 18 1/2 Sommario!

Dettagli

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 1 Rappresentazione dell'informazione Zeynep KIZILTAN zkiziltan@deis.unibo.it Introduzione Zeynep KIZILTAN Si pronuncia Z come la S di Rose altrimenti, si legge come

Dettagli

Unità aritmetica e logica

Unità aritmetica e logica Aritmetica del calcolatore Capitolo 9 Unità aritmetica e logica n Esegue le operazioni aritmetiche e logiche n Ogni altra componente nel calcolatore serve questa unità n Gestisce gli interi n Può gestire

Dettagli

CPU a singolo ciclo. Lezione 18. Sommario. Architettura degli Elaboratori e delle Reti. Proff. A. Borghese, F. Pedersini

CPU a singolo ciclo. Lezione 18. Sommario. Architettura degli Elaboratori e delle Reti. Proff. A. Borghese, F. Pedersini Architettura degli Elaboratori e delle Reti Lezione 8 CPU a singolo ciclo Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 8 /33 Sommario! La

Dettagli

Aritmetica dei Calcolatori 2

Aritmetica dei Calcolatori 2 Laboratorio di Architettura 1 aprile 2011 1 Operazioni bit a bit 2 Rappresentazione binaria con segno 3 Esercitazione Operazioni logiche bit a bit AND OR XOR NOT IN OUT A B A AND B 0 0 0 0 1 0 1 0 0 1

Dettagli

Architettura degli elaboratori CPU a ciclo singolo

Architettura degli elaboratori CPU a ciclo singolo Architettura degli elaboratori CPU a ciclo singolo Prof. Alberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano iferimento sul Patterson: capitolo 4.2, 4.4,

Dettagli

una rete combinatoria è un circuito logico avente n ingressi (x 1

una rete combinatoria è un circuito logico avente n ingressi (x 1 Reti combinatorie una rete combinatoria è un circuito logico avente n ingressi (x,,,x n ) ed m uscite (y,y 2,,y m ), ciascuno dei quali assume valori binari (/), e tale che a ciascuna combinazione degli

Dettagli

Lezione 6. Lezione 6

Lezione 6. Lezione 6 Lezione 6 Sommario Moltiplicatori veloci a look-up table Moltiplicatori veloci a matrice Divisione Circuiti per aritmetica floating point Simone Buso - Microcontrollori e DSP - Lezione 6 1 Materiale di

Dettagli

Le operazioni. di somma. e sottrazione

Le operazioni. di somma. e sottrazione Le operazioni di somma e sottrazione S. Salvatori marzo 2016 (36 di 171) L'unità aritmetico-logica La ALU rappresenta l'elemento principale di una CPU quale dispositivo di elaborazione. ALU AI BUS ESTERNI

Dettagli

Es. 6 Moltiplicazione e divisione tra

Es. 6 Moltiplicazione e divisione tra Es. 6 Moltiplicazione e divisione tra numeri interi (Firmware) Circuito della moltiplicazione Moltiplicando (A), 32 bit 32 32 ALU 32 add Operazione: P = A x B 32 P Prodotto (P), 32 63 bit Moltiplicatore

Dettagli

Architettura degli Elaboratori Lez. 8 CPU MIPS a 1 colpo di clock. Prof. Andrea Sterbini

Architettura degli Elaboratori Lez. 8 CPU MIPS a 1 colpo di clock. Prof. Andrea Sterbini Architettura degli Elaboratori Lez. 8 CPU MIPS a 1 colpo di clock Prof. Andrea Sterbini sterbini@di.uniroma1.it Argomenti Progetto della CPU MIPS a 1 colpo di clock - Istruzioni da implementare - Unità

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori circuiti combinatori: ALU slide a cura di Salvatore Orlando, Marta Simeoni, Andrea Torsello 1 ALU ALU (Arithmetic Logic Unit) circuito combinatorio all interno del processore per l esecuzione di istruzioni

Dettagli

Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati

Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati Il Livello LogicoDigitale i Blocchi funzionali combinatori Circuiti integrati Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati

Dettagli

Architettura degli Elaboratori A Modulo 2

Architettura degli Elaboratori A Modulo 2 ALU Architettura degli Elaboratori A Modulo 2 ALU slides a cura di Andrea Torsello e Salvatore Orlando ( Unit ALU (Arithmetic Logic circuito combinatorio all interno del processore per l esecuzione di

Dettagli

Virtual CPU (Eniac): parte 2

Virtual CPU (Eniac): parte 2 Architettura dei Calcolatori Prof. Enrico Nardelli Università degli Studi di Roma Tor Vergata Virtual CPU (Eniac): parte 2 1 Dove eravamo rimasti OpCode 2 La ALU e le sue funzionalità Operazioni possibili:

Dettagli

Elettronica dei Sistemi Programmabili A.A Microcontrollori. Esercizi

Elettronica dei Sistemi Programmabili A.A Microcontrollori. Esercizi Elettronica dei Sistemi Programmabili A.A. 2013-2014 Microcontrollori Esercizi Registro speciale APSR: flag della ALU Flag della ALU N (b31) : copia di b31 del risultato. '1' se negativo, '0' se posivo

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici LIVELLO ORGANIZZAZIONE: SCHEMI DI BASE ALU e REGISTER FILE Massimiliano Giacomin 1 DOVE CI TROVIAMO LIVELLO SIST. OP. Application Binary Interface (ABI) ISA Instruction Set Architecture

Dettagli

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi Somma di numeri floating point Algoritmi di moltiplicazione e divisione per numeri interi Standard IEEE754 " Standard IEEE754: Singola precisione (32 bit) si riescono a rappresentare numeri 2.0 10 2-38

Dettagli

Circuiti combinatori

Circuiti combinatori Laboratorio di Architetture degli Elaboratori I Corso di Laurea in Informatica, A.A. 2018-2019 Università degli Studi di Milano Circuiti combinatori Nicola Basilico Dipartimento di Informatica Via Comelico

Dettagli

Lezione 6. Lezione 6. Moltiplicatori a look-up table. Moltiplicatori a look-up table. Moltiplicatori veloci. Moltiplicatori a look-up table.

Lezione 6. Lezione 6. Moltiplicatori a look-up table. Moltiplicatori a look-up table. Moltiplicatori veloci. Moltiplicatori a look-up table. Sommario Lezione 6 Moltiplicatori veloci a look-up table Moltiplicatori veloci a matrice Circuiti per aritmetica floating point Simone Buso - Microcontrollori e DSP - Lezione 6 1 Lezione 6 Materiale di

Dettagli

Indice. Prefazione. sommario.pdf 1 05/12/

Indice. Prefazione. sommario.pdf 1 05/12/ Prefazione xi 1 Introduzione 1 1.1 Evoluzione della progettazione dei sistemi digitali 1 1.2 Flusso di progettazione dei sistemi digitali 2 1.3 Obiettivi del libro 6 1.4 Struttura ragionata del libro 7

Dettagli

Calcolatori Elettronici A a.a. 2008/2009

Calcolatori Elettronici A a.a. 2008/2009 Calcolatori Elettronici A a.a. 2008/2009 LIVELLO ORGANIZZAZIONE: SCHEMI DI BASE Massimiliano Giacomin 1 DUE ASPETTI Progettare circuiti per permettano di: 1. Trasferire l informazione da un punto a un

Dettagli

Virtual CPU (Eniac): parte 2

Virtual CPU (Eniac): parte 2 Architettura dei Calcolatori Prof. Enrico Nardelli Università degli Studi di Roma Tor Vergata Virtual CPU (Eniac): parte 2 1 Dove eravamo rimasti OpCode 2 La ALU e le sue funzionalità Operazioni possibili:

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2014/15 Circuiti Logici

Laboratorio di Architettura degli Elaboratori A.A. 2014/15 Circuiti Logici Laboratorio di Architettura degli Elaboratori A.A. 2014/15 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e

Dettagli

Circuiti Combinatori

Circuiti Combinatori Circuiti Combinatori circuiti combinatori sono circuiti nei quali le uscite dipendono solo dalla combinazione delle variabili logiche presenti nello stesso istante all ingresso Essi realizzano: Operazioni

Dettagli