Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità"

Transcript

1 Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità Luisa Bortolotti Trento, Lezione 24 : IL SISTEMA K-G (1) CAPITOLO 7 Presentiamo infine una dimostrazione dettagliata di completezza per il sistema che denominiamo K-G in quanto caratterizzato dalla presenza di formule G( ) LINGUAGGIO Il Linguaggio L è quello di K-F SINTASSI Definizione Con G( ) indichiamo una fbf della forma: 1 L( 2...L( n ( ))...); =L( ) Assiomatizzazione. Gli assiomi di K-G sono: - tutte le tautologie classiche: - K: L( ) (L L ) - G. x (E(t) (t)) - I1. t=t - I2. t 1 =s 1 t n =s n (P n (t 1,,t n ) (P n (s 1,,s n )), dove P n è una lettera predicativa ad n posti. Le regole di inferenza sono: MP N 1 GARSON J.W., Completeness of Some Quantified Modal Logics, "Logique et Analyse", 21, 1978, pp

2 L GUG G(E(x) (x)) G( x (x)), dove x non è libera in G( x (x)). Lemma K-G x y(x=y) Dimostrazione. K-G x[ y (x=y) (x=x)] K-G x y[ (x=y) (x=x)] K-G x y[x=x x=y] K-G x(x=x) x y[x=x x=y] K-G x y[(x=x) ((x=x) (x=y))] K-G x y[x=y] Per definizione di E(x) si ha che xe(x). 7.3 SEMANTICA Definiamo innanzitutto il concetto di K-G modello. Definizione Un K-G modello M è una quadrupla ordinata M=<W,R,D,V> dove: W: è un insieme non vuoto R : è una relazione binaria su W: R W 2 D : è una funzione tale che associa un insieme D w (il dominio di w) ad ogni w i W, dove vale che D w D v, cioè mondi differenti di W hanno domini diversi V: è una funzione di assegnazione (che interpreta le costanti specifiche del linguaggio) tale che, per ogni w W, soddisfa le seguenti condizioni: - per ogni costante individuale c, V(c) è una funzione tale che V(c)w U, dove U= {D w } w W - per ogni predicato P n ad n posti, V(P n ) è una funzione tale che V(P n )w U n - per il predicato dell'identità, V(=) è una funzione tale che V(=)w (D w ) 2 è una relazione di congruenza rispetto a V(P n )w per ogni P n del linguaggio - per il predicato E, V(E) è una funzione tale che V(E)w=D w Le definizioni di interpretazione e di reinterpretazione ' rimangono quelle date nel capitolo 1. Dato un K-G modello M=<W,R,D,V> definiamo, per induzione, quando una formula ben formata è vera in w W, rispetto al modello M (cioè, quando M = w (x 1,,x n )). Ma, per fare questo, abbiamo bisogno dei concetti, già definiti in precedenza, di valutazione e di soddisfazione. Ricordiamo la definizione ricorsiva di soddisfazione di una fbf: Definizione M = w P n (t 1,,t n ) sse <V (t 1 )w,,v (t n )w> V(P n )w M = w sse M =/= w o M = w M = w sse M =/= w M = w x (x) sse per ogni d D w, M (x/d) = w (x) M = w L sse per ogni v, wrv, M = v Definizione Verità in un mondo w W rispetto al modello M=<W,R,D,V>: M = w sse per ogni : M = w

3 Definizione Una fbf (x 1,,x n ) è vera in un K-G modello M=<W,R,D,V>, cioè M = (x 1,,x n ) sse per ogni w W e tutte le ennuple d 1,,d n di elementi di U, M (x1/d1,,xn/dn) = w (x 1,,x n ). Definizione Una formula ben formata è vera nel sistema K-G, cioè K-G = sse per ogni K-G modello M, M =. Teorema di validità Se K-G, allora K-G =, per ogni fbf. Dimostrazione. Si esegue come il solito per induzione DEFINIZIONI E LEMMI PREPARATORI ALLA DIMOSTRAZIONE DI COMPLETEZZA Descriviamo ora le proprietà di. Sia un insieme di fbf di L: Definizione sse ci sono le fbf 1,, n di tali che K-G 1 n Definizione è K-G-consistente sse se allora / Definizione è K-G-massimale sse se / allora Definizione è K-G-induttivo sse se G(E(t) (t)) per ogni t L, allora G( xa(x)) per ogni variabile x. Definizione è K-G-saturo sse se è K-G-consistente, K-Gmassimale e K-G-induttivo. Definizione è K-G-ricco sse se x (x), allora c'è un termine t di L tale che (t). Lemma Se è un insieme K-G-saturo di fbf, allora è ricco. Dimostrazione. Supponiamo che x (x) e che / (t) per ogni t di L. Poiché è K-G-massimale, (t) per ogni t di L e così x (x), poiché è K-G-induttivo. Quindi xa(x); così giungiamo ad una contraddizione. Lemma Se è un insieme K-G-induttivo, allora = { 1,, n } è K-Ginduttivo. Dimostrazione. Supponiamo che G(E(t) (t)) per ogni t L, per esempio 1 L( 2 L( i (E(t) (t))) ) per ogni 1,, i. Così: ( 1 ) L( 2 L( i (E(t) (t))) ), dove 1 n. Poiché è K-G-induttivo, abbiamo ( 1 ) L( 2 L( i x (x)) ), perciò 1 L( 2 L( i x (x)) ), e così G( x (x)). Lemma Se è un insieme K-G-consistente e K-G-induttivo di fbf, allora esiste un insieme tale che, è K-G-saturo e il linguaggio di è lo stesso rispetto al linguaggio di. Dimostrazione. 1, 2, 3, sia un'enumerazione di tutte le fbf di L. Definiamo poi la seguente catena di insiemi di fbf: Sia 0 = Sia i+1 = - i { i } se i { i } è K-G-consistente e i G( x (x)) - i { i } { G(E(t) (t))} se i G( x (x)), i { i } è K-G-consistente e t è un termine di L tale che i { i } { G(E(t) (t))} è K-G-consistente - i altrimenti. Sia = i, i. Innanzitutto mostriamo che la definizione data di è una "buona" definizione. Per esempio, se i { G( x (x))} è K-G-consistente, allora esiste un termine t di L tale che i { G( x (x))} { G(E(t) (t))} è K-Gconsistente.

4 Supponiamo, per reductio, che per ogni t di L, i { G( x (x))} G(E(t) (t)). Per il lemma7.4.2., i { G( x (x))} G( x (x)) e, di conseguenza, i { G ( x (x))} è non K-G-consistente, contrariamente all'ipotesi di costruzione. 1. e è K-G-consistente per costruzione 2. è K-G-induttivo. Infatti, se / G( x (x)), allora { G( x (x))} è K-G-consistente e i+1 = i { i } { G(E(t) (t))} per qualche termine t di L, dove i G( x (x)). E perciò / G(E(t) (t)), per qualche termine t di L, poiché è K-G-consistente. 3. è K-G-massimale. Infatti se /, allora { } è K-G-consistente, perciò i+1 = i { i }, dove i, così. Lemma Sia un insieme K-G-consistente e finito di fbf di L; allora esiste un insieme di fbf di L tale che: e è K-G-saturo. Dimostrazione. La dimostrazione è simile a quella del lemma precedente. Osserviamo che se è finito, allora i è finito e così i+1 è ben definito. Infatti se i { G( x (x))} è K-G-consistente e t è un termine che non appare neppure in i o in G( x (x)); allora i { G( x (x))} { G(E(t) (t))} è K-G-consistente. Supponiamo che questo non sia il caso, sia i { G( x (x))} G(E(t) (t)), e perciò per GUG, i { G( x (x))} G( x (x)). Così i { G( x (x))} è non K- G-consistente in contraddizione con l'ipotesi di costruzione. Lemma Se è K-G-saturo e L, allora ={ : L } { } è K-G-consistente e K-G-induttivo. Dimostrazione. ' è banalmente K-G-consistente. Dimostriamo invece che ' è K-G-induttivo. Supponiamo che G(E(t) (t)), per tutti i termini t di L. Così: K-G ( 1 n ) ( G(E(t) (t))), per tutti i termini t di L, e K-G (L 1 L n ) L( G(E(t) (t))), per tutti i termini t di L. Perciò: L ( G(E(t) (t))). Poi L( ( 1 2 i (E(t) (t)))) e L (( 1 ) 2 i (E(t) (t))) per tutti i termini t di L ; essendo K-Ginduttivo, L(( 1 ) 2 i x (x))). Per la K-G-massimalità di, L (( 1 ) 2 i x (x)) ; di qui ( 1 ) 2 i x (x) ', e così ( 1 ) 2 i x (x). Poi si ha G( x (x)); e, di conseguenza, G( x (x))), poiché '. Lemma Se è un insieme K-G-saturo di fbf di L tale che L, allora esiste un insieme, K-G-saturo, di fbf di L tale che { : L } { }. Dimostrazione. Questo lemma è direttamente dimostrabile dai lemmi precedenti. Lemma Se K-G /, allora esiste un insieme K-G-saturo, tale che. Dimostrazione. Se K-G /, allora { } è K-G-consistente e finito. Così, per il lemma , esiste l'insieme richiesto. Lemma {E(t)} è K-G-consistente per tutti i termini t. Dimostrazione. Supponiamo che per un qualche t, K-G E(t). Allora per il lemma delle costanti 2, abbiamo che K-G E(x). Poi, a fortiori, otteniamo che 2 Sia SF un sistema formale, S il suo linguaggio, C un insieme di costanti non di L. Definizione: L'ampliamento semplice di SF mediante C, in simboli SF c, è il sistema formale che ha come linguaggio L+C e come assiomi gli assiomi di SF. Si dimostra il seguente importante Lemma delle costanti: Per ogni di L e per ogni n-pla di costanti c 1,,c n di C, se y 1, y n sono n variabili distinte non occorrenti in allora SFC (z 1/c 1,,z n/c n) sse SF (x 1/y 1,,x n/y n) 1)Sia 1,, k una dimostrazione di SF c di (x 1/c 1,,x n/c n). Per ogni i (1 i n), i k sia la formula che si ottiene da i rimpiazzando ogni occorrenza di qualche c j con y j (1 j n). Si constata che: gli assiomi logici di un dato tipo si trasformano in assiomi logici dello stesso tipo; le regole di inferenza continuano ad

5 K-G (Ex Ex). Per la regola GUG, otteniamo che K-G x E(x), in contraddizione con il lemma , K-G xe(x). Quindi {E(t)} è K-Gconsistente per tutti i termini t Luisa Bortolotti essere correttamente applicabili; gli assiomi specifici - che non contengono costanti di C - restano immutati. Allora 1k,, k k è una dimostrazione in SF di (x 1/y 1,,x n/y n). 2)Se SF (x 1/y 1,,x n/y n), allora banalmente SF (x 1/c 1,,x n/c n)

x u v(p(x, fx) q(u, v)), e poi

x u v(p(x, fx) q(u, v)), e poi 0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Semantica dei programmi. La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma.

Semantica dei programmi. La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma. Semantica dei programmi La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma. Semantica operazionale: associa ad ogni programma la sequenza delle sue

Dettagli

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine Università di Bergamo Anno accademico 2006 2007 Ingegneria Informatica Foglio Algebra e Logica Matematica Calcolo delle proposizioni Logica del primo ordine Esercizio.. Costruire le tavole di verità per

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

Anno 5 4. Funzioni reali: il dominio

Anno 5 4. Funzioni reali: il dominio Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) [# Aii [10 pagine]] Algebre di Boole Un algebra di Boole è una struttura 1. Definizione e proprietá B =< B,,, ν, 0, 1 > in cui B è un insieme non

Dettagli

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere)

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere) Che cos è una funzione? Assegnati due insiemi X e Y si ha una funzione elemento di X uno e un solo elemento di Y. f : X Y se esiste una corrispondenza che associa ad ogni Osservazioni: l insieme X è detto

Dettagli

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare Linguaggi del I ordine - semantica Per dare significato ad una formula del I ordine bisogna specificare Un dominio Un interpretazione Un assegnamento 1 Linguaggi del I ordine - semantica (ctnd.1) Un modello

Dettagli

Fondamenti dei linguaggi di programmazione

Fondamenti dei linguaggi di programmazione Fondamenti dei linguaggi di programmazione Aniello Murano Università degli Studi di Napoli Federico II 1 Riassunto delle lezioni precedenti Prima Lezione: Introduzione e motivazioni del corso; Sintassi

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi)

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) Anno 1 Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) 1 Introduzione In questa lezione imparerai a utilizzare le diverse tipologie di relazione e a distinguerle a seconda delle

Dettagli

f: AxB f(x)=y, f={<x,y> per ogni x in A esiste unica y in B f(x)=y} f={<1,2>, <2,3>, <3,3>} : {1,2,3} {1,2,3} f(1)=2, f(2)=3, f(3)=3

f: AxB f(x)=y, f={<x,y> per ogni x in A esiste unica y in B f(x)=y} f={<1,2>, <2,3>, <3,3>} : {1,2,3} {1,2,3} f(1)=2, f(2)=3, f(3)=3 Insieme delle parti di A : Funzione : insieme i cui elementi sono TUTTI i sottoinsiemi di A f: AxB f(x)=y, f={ per ogni x in A esiste unica y in B f(x)=y} f={, , } : {1,2,3} {1,2,3}

Dettagli

CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI

CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI ELISABETTA AVIZZANO NICOLETTA CAPOTORTO CHIARA CEROCCHI GIORGIO CICCARELLA IVAN COLAVITA EMANUELE DI CARO SERENA NUNZIATA AMANDA PISELLI ANDREA PIEPOLI

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Alcuni complementi sulle successioni

Alcuni complementi sulle successioni Alcuni complementi sulle successioni 1 (Teorema del confronto) Siano {a n } e {b n } due successioni regolari tali che si abbia a n b n n N. (1) Allora: a n b n. (2) Dim. Sia L = a n ed L = b n. Se L =

Dettagli

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j. LEZIONE 31 31.1. Domini di funzioni di più variabili. Sia ora U R n e consideriamo una funzione f: U R m. Una tale funzione associa a x = (x 1,..., x n ) U un elemento f(x 1,..., x n ) R m : tale elemento

Dettagli

DOMINI A FATTORIZZAZIONE UNICA

DOMINI A FATTORIZZAZIONE UNICA DOMINI A FATTORIZZAZIONE UNICA CORSO DI ALGEBRA, A.A. 2012-2013 Nel seguito D indicherà sempre un dominio d integrità cioè un anello commutativo con unità privo di divisori dello zero. Indicheremo con

Dettagli

Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità

Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità Luisa Bortolotti Trento, 30.04.04 Lezione 26 : IL SISTEMA K-G (3) 2. MODALITA

Dettagli

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti Introduzione LOGICA DEI PREDICATI Corso di Intelligenza Artificiale A.A. 2009/2010 Prof. Ing. Fabio Roli La logica dei predicati, o logica del primo ordine (LPO) considera schemi proposizionali composti

Dettagli

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno NORMALIZZAZIONE DI SCHEMI RELAZIONALI Prof.ssa Rosalba Giugno PROBLEMA GENERALE La progettazione concettuale e logica produce uno schema relazionale che rappresenta la realta dei dati nella nostra applicazione.

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Alcune nozioni di base di Logica Matematica

Alcune nozioni di base di Logica Matematica Alcune nozioni di base di Logica Matematica Ad uso del corsi di Programmazione I e II Nicola Galesi Dipartimento di Informatica Sapienza Universitá Roma November 1, 2007 Questa é una breve raccolta di

Dettagli

Indecidibilità, indefinibilità e incompletezza. 1

Indecidibilità, indefinibilità e incompletezza. 1 Indecidibilità, indefinibilità e incompletezza. 1 Possiamo ora trattare unitariamente alcuni dei principali risultati negativi della logica: il teorema di Church sull'indecidibilità della logica, il teorema

Dettagli

LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it

LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it LOGICA PER LA PROGRAMMAZIONE Franco Turini turini@di.unipi.it IPSE DIXIT Si consideri la frase: in un dato campione di pazienti, chi ha fatto uso di droghe pesanti ha utilizzato anche droghe leggere. Quali

Dettagli

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Docente: Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi 089-963334 ALGEBRA DI COMMUTAZIONE Lo scopo di questa algebra

Dettagli

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Una funzione reale di una variabile reale f di dominio A è una legge che ad ogni x A associa un numero reale che denotiamo con f(x). Se A = N, la f è detta successione di numeri reali.

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

F (x) = f(x) per ogni x I. Per esempio:

F (x) = f(x) per ogni x I. Per esempio: Funzioni Primitive (Integrali Indefiniti) (l.v.) Pur essendo un argomento che fa parte del Calcolo Differenziale, molti autori inseriscono funzioni primitive nel capitolo sul Calcolo Integrale, in quanto

Dettagli

1 Giochi a due, con informazione perfetta e somma zero

1 Giochi a due, con informazione perfetta e somma zero 1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

Anelli a fattorizzazione unica. Domini ad ideali principali. Anelli Euclidei

Anelli a fattorizzazione unica. Domini ad ideali principali. Anelli Euclidei Capitolo 5: Anelli speciali: Introduzione: Gli anelli speciali sono anelli dotati di ulteriori proprietà molto forti che ne rendono agevole lo studio. Anelli euclidei Domini ad ideali principali Anelli

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

1 Insiemi e terminologia

1 Insiemi e terminologia 1 Insiemi e terminologia Assumeremo come intuitiva la nozione di insieme e ne utilizzeremo il linguaggio come strumento per studiare collezioni di oggetti. Gli Insiemi sono generalmente indicati con le

Dettagli

Il Modello Relazionale

Il Modello Relazionale Il Modello Relazionale Il modello relazionale 1 Il modello relazionale Proposto da E. F. Codd nel 1970 per favorire l indipendenza dei dati e reso disponibile come modello logico in DBMS reali nel 1981

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Anno 1. Definizione di Logica e operazioni logiche

Anno 1. Definizione di Logica e operazioni logiche Anno 1 Definizione di Logica e operazioni logiche 1 Introduzione In questa lezione ci occuperemo di descrivere la definizione di logica matematica e di operazioni logiche. Che cos è la logica matematica?

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana A volte i fenomeni economici che ci interessano non variano con continuitá oppure non possono essere osservati con continuitá, ma solo a intervalli

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

ESERCIZI SVOLTI. 1) Dimostrare che l insieme. non è ricorsivo. Soluzione: Definiamo l insieme

ESERCIZI SVOLTI. 1) Dimostrare che l insieme. non è ricorsivo. Soluzione: Definiamo l insieme ESERCIZI SVOLTI 1) Dimostrare che l insieme Allora notiamo che π non è vuoto perché la funzione ovunque divergente appartiene all insieme avendo per dominio l insieme. Inoltre π non coincide con l insieme

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Rappresentazione della conoscenza Lezione 11 Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Sommario Pianificazione Deduttiva nel calcolo delle situazioni (Reiter 3.3) Teoria del calcolo

Dettagli

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 Risoluzione Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 1 Risoluzione Introdurremo ora un metodo per capire se un insieme di formule è soddisfacibile o meno. Lo vedremo prima per insiemi

Dettagli

Esercizio per casa. Filosofia della scienza Gianluigi Bellin. October 29, 2013. 1. Si formalizzino i seguenti enunciati nel calcolo dei predicati.

Esercizio per casa. Filosofia della scienza Gianluigi Bellin. October 29, 2013. 1. Si formalizzino i seguenti enunciati nel calcolo dei predicati. Esercizio per casa. Filosofia della scienza Gianluigi Bellin October 29, 2013 1. Si formalizzino i seguenti enunciati nel calcolo dei predicati. 1.1 Condizione necessaria e sufficiente perché un corpo

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Collegamento a terra degli impianti elettrici

Collegamento a terra degli impianti elettrici Collegamento a terra degli impianti elettrici E noto che il passaggio di corrente nel corpo umano provoca dei danni che possono essere irreversibili se il contatto dura troppo a lungo. Studi medici approfonditi

Dettagli

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE 1. Proporzionalità diretta e proporzionalità inversa Analizziamo le seguenti formule Peso Lordo = Peso Netto + Tara Ricavo = Utile + Costo Rata = Importo + Interesse

Dettagli

Fa riferimento ad una famiglia di linguaggi dichiarativi, basati sul calcolo dei predicati del primo ordine

Fa riferimento ad una famiglia di linguaggi dichiarativi, basati sul calcolo dei predicati del primo ordine Calcolo relazionale Fa riferimento ad una famiglia di linguaggi dichiarativi, basati sul calcolo dei predicati del primo ordine calcolo Specifica (èla base relazionale su tuple le di proprietà molti con

Dettagli

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello V. M. Abrusci 12 ottobre 2015 0.1 Problemi logici basilari sulle classi Le classi sono uno dei temi della logica. Esponiamo in questa

Dettagli

Punti Fissi. Mappe tra insiemi parz. ordinati. Siano (P, P ) e (Q, Q ) due insiemi parzialmente ordinati. Una funzione ϕ da P a Q si dice:

Punti Fissi. Mappe tra insiemi parz. ordinati. Siano (P, P ) e (Q, Q ) due insiemi parzialmente ordinati. Una funzione ϕ da P a Q si dice: Punti Fissi Mappe tra insiemi parz. ordinati Siano (P, P ) e (Q, Q ) due insiemi parzialmente ordinati. Una funzione ϕ da P a Q si dice: monotona (preserva l ordine) se p 1 P p 2 ϕ(p 1 ) Q ϕ(p 2 ) embedding

Dettagli

2. Semantica proposizionale classica

2. Semantica proposizionale classica 20 1. LINGUAGGIO E SEMANTICA 2. Semantica proposizionale classica Ritorniamo un passo indietro all insieme dei connettivi proposizionali che abbiamo utilizzato nella definizione degli enunciati di L. L

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità...

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità... Indice 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo............................. 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità.............. 5 i Capitolo 1 Introduzione

Dettagli

Predicati e Quantificatori

Predicati e Quantificatori Predicati e Quantificatori Limitazioni della logica proposizionale! Logica proposizionale: il mondo è descritto attraverso proposizioni elementari e loro combinazioni logiche! I singoli oggetti cui si

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Algebra di Boole e reti logiche. Giovedì 8 ottobre 2015

Algebra di Boole e reti logiche. Giovedì 8 ottobre 2015 Algebra di Boole e reti logiche Giovedì 8 ottobre 2015 Punto della situazione Abbiamo visto le varie rappresentazioni dei numeri in binario e in altre basi e la loro aritmetica Adesso vedremo la logica

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

Interesse, sconto, ratei e risconti

Interesse, sconto, ratei e risconti 129 Interesse, sconto, ratei e risconti Capitolo 129 129.1 Interesse semplice....................................................... 129 129.1.1 Esercizio per il calcolo dell interesse semplice........................

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

logica dei predicati

logica dei predicati Calcolo relazionale Calcolo relazionale: logica dei predicati, dove la semantica di ogni predicato esprime una condizione sui dati. E un linguaggio di query, dichiarativo: il risultato è dato da una descrizione

Dettagli

RAPPRESENTAZIONE GRAFICA DEGLI ALGORITMI

RAPPRESENTAZIONE GRAFICA DEGLI ALGORITMI RAPPRESENTAZIONE GRAFICA DEGLI ALGORITMI Diagramma di flusso L algoritmo può essere rappresentato in vari modi, grafici o testuali. Uno dei metodi grafici più usati e conosciuti è il cosiddetto diagramma

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Matematica 1 - Corso di Laurea in Ingegneria Meccanica Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Anno 3. Funzioni: dominio, codominio e campo di esistenza

Anno 3. Funzioni: dominio, codominio e campo di esistenza Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

Linguaggi per COMUNICARE. Il linguaggio è un sistema codificato di segni che consente la comunicazione, intesa come scambio di informazioni

Linguaggi per COMUNICARE. Il linguaggio è un sistema codificato di segni che consente la comunicazione, intesa come scambio di informazioni Linguaggi per COMUNICARE Il linguaggio è un sistema codificato di segni che consente la comunicazione, intesa come scambio di informazioni Sintassi e semantica dei linguaggi Un informazione può : Essere

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,

Dettagli

Anno 3. Classificazione delle funzioni

Anno 3. Classificazione delle funzioni nno 3 Classificazione delle funzioni 1 Introduzione In questa lezione affronteremo lo studio delle principali proprietà delle funzioni, imparando a classificarle e a compiere alcune operazioni su esse.

Dettagli

Esercitazione numeri

Esercitazione numeri Sapendo che 0 C corrispondono a 32 F e che -40 C corrispondono a -40 F, determina: 1) una formula che trasforma gradi Fahrenheit in gradi Celsius; 2) una formula che trasforma gradi Celsius in gradi Fahrenheit.

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio Appunti di informatica Lezione 2 anno accademico 2015-2016 Mario Verdicchio Sistema binario e logica C è un legame tra i numeri binari (0,1) e la logica, ossia la disciplina che si occupa del ragionamento

Dettagli

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa.

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa. Algebra booleana Nel lavoro di programmazione capita spesso di dover ricorrere ai principi della logica degli enunciati e occorre conoscere i concetti di base dell algebra delle proposizioni. L algebra

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

Testi di Esercizi e Quesiti 1

Testi di Esercizi e Quesiti 1 Architettura degli Elaboratori, 2009-2010 Testi di Esercizi e Quesiti 1 1. Una rete logica ha quattro variabili booleane di ingresso a 0, a 1, b 0, b 1 e due variabili booleane di uscita z 0, z 1. La specifica

Dettagli

DAL PROBLEMA ALL'ALGORITMO AL PROGRAMMA SCRITTO IN Come. Scopo principale dell informatica è risolvere problemi con i calcolatori.

DAL PROBLEMA ALL'ALGORITMO AL PROGRAMMA SCRITTO IN Come. Scopo principale dell informatica è risolvere problemi con i calcolatori. DAL PROBLEMA ALL'ALGORITMO AL PROGRAMMA SCRITTO IN Come Scopo principale dell informatica è risolvere problemi con i calcolatori. Non tutti i problemi sono risolvibili con i calcolatori. Si può dimostrato

Dettagli

Ancora su diagnosi. Lezione 9 giugno. Conoscenza incompleta e senso comune. Frameworks per il ragionamento basato su assunzioni

Ancora su diagnosi. Lezione 9 giugno. Conoscenza incompleta e senso comune. Frameworks per il ragionamento basato su assunzioni Ancora su diagnosi Lezione 9 giugno Ancora su diagnosi Conoscenza incompleta, senso comune e ragionamento basato su assunzioni Cenni su pianificazione Abbiamo accennato alla diagnosi di guasti. Occorre

Dettagli

Semantica. Come funziona il linguaggio SEMANTICA

Semantica. Come funziona il linguaggio SEMANTICA Come funziona il linguaggio SEMANTICA Semantica Studio del significato Semantica linguistica Studio di come il significato viene espresso attraverso: Parole Sintagmi Frasi Semantica linguistica Significato

Dettagli

Sudoku: ancora un esercizio

Sudoku: ancora un esercizio Sudoku: ancora un esercizio Silvio Ranise LORIA & INRIA-Lorraine Nancy (France) 17 Gennaio 2007 Un esempio (sempre lo stesso) 5 3 7 6 1 9 5 9 8 6 8 6 3 4 8 3 1 7 2 6 6 2 8 4 1 9 5 8 7 9 Regole (sempre

Dettagli

Interesse, sconto, ratei e risconti

Interesse, sconto, ratei e risconti TXT HTM PDF pdf P1 P2 P3 P4 293 Interesse, sconto, ratei e risconti Capitolo 129 129.1 Interesse semplice....................................................... 293 129.1.1 Esercizio per il calcolo dell

Dettagli

Capitolo 7: Teoria generale della calcolabilitá

Capitolo 7: Teoria generale della calcolabilitá Capitolo 7: Teoria generale della calcolabilitá 1 Differenti nozioni di calcolabilitá (che seguono da differenti modelli di calcolo) portano a definire la stessa classe di funzioni. Le tecniche di simulazione

Dettagli

Introduzione all Information Retrieval

Introduzione all Information Retrieval Introduzione all Information Retrieval Argomenti della lezione Definizione di Information Retrieval. Information Retrieval vs Data Retrieval. Indicizzazione di collezioni e ricerca. Modelli per Information

Dettagli