6. Trasformate e Funzioni di Trasferimento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "6. Trasformate e Funzioni di Trasferimento"

Transcript

1 6. Trasformate e Funzioni di Trasferimento

2 6.3 Richiami sulla Trasformata di Laplace Definizione La trasformata di Laplace di f(t) è la funzione di variabile complessa s C, (s = σ + jω), F (s) = e st f(t)dt L[f].5 f(t).5 Esempi Funzione impulso (Delta di Dirac) a : { f(t) =δ(t) se t + se t = tale che t δ(t) = L[δ] =F (s) = s C Funzione gradino : se t< f(t) =I(t) se t L[I] = F (s) = s a La funzione δ(t) is può considerare come il limite della successione di funzioni f ɛ (t) per ɛ tali che f ɛ (t) = ɛ se t ɛ altrimenti A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-

3 6.3 Richiami sulla Trasformata di Laplace Proprietà della trasformata di Laplace Linearità : L[k f (t)+k 2 f 2 (t)] = k L[f (t)] + k 2 L[f 2 (t)] Esempio: f(t) =δ(t) 2I(t) L[f] = 2 s. Traslazione nel tempo : L[f(t τ)] = e sτ L[f(t)] Esempio: f(t) =3I(t 2) L[f] = 3e 2s s. Traslazione nella frequenza : L[e at f(t)] = F (s a), dove F (s) =L[f(t)] Esempio: f(t) =e at I(t) L[f] = s a Esempio: f(t) =cos(ωt)i(t) L[f] = (Nota: cos(ωt) = ejωt +e jωt 2 ) Derivazione nel tempo a : s s 2 +ω 2 L[ d dt f(t)] = sl[f(t)] f(+ ) Esempio: f(t) =sin(ωt)i(t) L[f] = Derivazione nella frequenza : ω s 2 +ω 2. L[tf(t)] = d ds L[f(t)] Esempio: f(t) =t I(t) L[f] = s 2. a f( + ) = lim t + f(t). Sef è continua in, f( + )=f() A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-2

4 6.3 Richiami sulla Trasformata di Laplace Teorema del valore iniziale : L[f(t)] = F (s) f( + ) lim f(t) = lim sf (s) t + s Esempio: f(t) =I(t) t I(t) F (s) = s s 2 f( + ) = = lim s sf (s) Teorema del valore finale : L[f(t)] = F (s) f(+ ) lim f(t) = lim sf (s) t + s Esempio: f(t) =I(t) e t I(t) F (s) = s s+ f(+ ) = = lim s sf (s) Pierre-Simon Laplace ( ) A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-3

5 6.4 Funzioni di Trasferimento - T. Continuo Considera il sistema a tempo continuo ẋ(t) = Ax(t)+Bu(t) y(t) = Cx(t)+Du(t) x() = x Applichiamo la trasformata di Laplace a : sx(s) x = AX(s)+BU(s) Y (s) = CX(s)+DU(s) dove X(s) =L[x(t)], U(s) =L[u(t)], Y (s) =L[y(t)]. Esplicitando rispetto a x e U(s): X(s) = (si A) x +(si A) BU(s) Y (s) = C(sI A) x ßÞ Ð Y L (s) +(C(sI A) B + D)U(s) ßÞ Ð Y F (s) Y L (s)=trasformata di Laplace della risposta libera Y F (s)=trasformata di Laplace della risposta forzata Definizione: Lafunzione di trasferimento di un sistema lineare tempo continuo (A, B, C, D) è G(s) =C(sI A) B + D cioè il rapporto fra la trasf. di Laplace Y (s) dell uscita y(t) e la trasf. di Laplace U(s) dell ingresso per u(t) per condizione iniziale nulla x =. a x(t) è una funzione derivabile, e quindi continua x( + ) = x() = x A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-4

6 6.4 Funzioni di Trasferimento - T. Continuo u(t) y(t) U(s) Y (s) A; B; C; D G(s) x = Esempio: Il sistema lineare ¾ ẋ(t) = y(t) = 2 2 x(t) ha per funzione di trasferimento ¾ x(t)+ u(t) G(s) = 2s +22 s 2 +s + Nota: La funzione di trasferimento non dipende dall ingresso! È una proprietà del sistema lineare. A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-5

7 6.4 Funzioni di Trasferimento - T. Continuo Considera l eq. diff. con ingresso dy (n) (t) dt n b m du (m) (t) dt m + a n dy (n ) (t) dt n + + a ẏ(t)+a y(t) = + b m du (m ) (t) dt m + + b u(t)+b u(t) Ponendo condizioni iniziali y(), ẏ(),...,y (n ) () nulle, si ottiene immediatamente la funzione di trasferimento equivalente G(s) = b ms m + b m s m + + b s + b s n + a n s n + + a s + a Esempio: ÿ(t)+3ẏ(t)+y(t) = u(t)+u(t) G(s) = s + s 2 +3s + Nota: la stessa f.d.t. G(s) si ottiene dalla forma matriciale equivalente dell eq. differenziale: G(s) = ẋ(t) = y(t) = ¾ 3 s x(t) ¾ x(t)+ u(t) 3 A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-6

8 6.4 Funzioni di Trasferimento - T. Continuo Alcune funzioni di trasferimento: Integratore ẋ(t) = u(t) y(t) = x(t) U(s) s Y (s) Doppio integratore ẋ (t) = x 2 (t) ẋ 2 (t) = u(t) y(t) = x (t) U(s) s 2 Y (s) Oscillatore ẋ (t) = x 2 (t) ẋ 2 (t) = x (t)+u(t) y(t) = x (t) U(s) s 2 + Y (s) A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-7

9 6.4 Funzioni di Trasferimento - T. Continuo Antitrasformata di Laplace Data la funzione di trasferimento G(s) = b ms m + b m s m + + b s + b (s p )(s p 2 )...(s p n ) (m <n) possiamo scomporla in fratti semplici (Hp: p i p j ) G(s) = α s p + + α n s p n dove α i è detto residuo di G(s) in p i α i = lim s pi (s p i )G(s) (nota che se p i = p j, allora α i =ᾱ j ) L antitrasformata di Laplace di G(s) è la funzione g(t) tale che L[g(t)] = G(s): g(t) =α e p t + + α n e p nt Nel caso di radici coincidenti (s p i ) k, nello sviluppo si hanno tutti i termini del tipo α i (s p i ) + + α ik (s p i ) k, α ij = la cui antitrasformata è (k j)! lim s p i d (k j) ds (k j) [(s p i) k G(s)] α i e p it + + α ik t k (k )! ep it A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-8

10 6.4 Funzioni di Trasferimento - T. Continuo Risposta all impulso Considera l ingresso impulsivo u(t) =δ(t) U(s) =. L uscita corrispondente y(t) è detta risposta all impulso. La trasformata di Laplace di y(t) è Y (s) =G(s) =G(s). Pertanto la risposta all impulso coincide con l antitrasformata g(t) della funzione di trasferimento G(s) Esempi Integratore u(t) = δ(t) y(t) = L [ s ]=I(t) U(s) s Y (s) Doppio integratore u(t) = δ(t) y(t) = L [ s 2 ]=t I(t) U(s) s 2 Y (s) Oscillatore U(s) u(t) = δ(t) y(t) = L [ s 2 + ]=sint I(t) s 2 + Y (s) A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-9

11 6.5 Poli e zeri u(t) G(s) y(t) Considera il sistema lineare descritto dalla funzione di trasferimento (m <n) G(s) = b ms m + b m s m + + b s + b s n + a n s n + + a s + a = N(s) D(s) Si dicono poli del sistema le radici di D(s) Si dicono zeri del sistema le radici di N(s) A tempo discreto le definizioni sono analoghe Esempio: G(s) = s +2 s 3 +2s 2 +3s +2 = s +2 (s +)(s 2 + s +2) poli: {, 2 + j 7 2, 2 j 7 2 }, zeri: { 2}. A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-

12 6.5 Poli e zeri Considera il sistema lineare ẋ(t) = Ax(t)+Bu(t) y(t) = Cx(t)+Du(t) x() = e la funzione di trasferimento corrispondente G(s) =C(sI A) B + D N(s) D(s) Il denominatore D(s) =det(si A). Quindi i poli di G(s) corrispondono agli autovalori di A. La stabilità del sistema si può quindi studiare sia tramite G(s) che tramite A Attenzione: alcuni autovalori di A possono non risultare poli di G(s). Esempio: A =,B=,C= det(si A) =(s )(s +) G(s) = s s+ = s + Il polo s =non ha influenza sul comportamento ingresso-uscita del sistema, ma ha influenza sulla risposta libera: x (t) =e t x (il sistema è instabile). A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-

13 6.6 Trasformata zeta Definizione La trasformata zeta di f(k) è la funzione di variabile complessa z C, (z = σ + jω), 2 F (z) = f(k)z k Z[f] k= f(k) Esempi Funzione impulso discreto : { f(k) =δ(k) se k se k = Z[δ] =F (z) k Funzione gradino discreto : { f(k) =I(k) se k< se k Z[I] = F (z) = z z Funzione esponenziale discreto : f(k) =a k I(k) Z[f] =F (z) = z z a A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-2

14 6.6 Trasformata zeta Proprietà della trasformata zeta Linearità : Z[k f (k)+k 2 f 2 (k)] = k Z[f (k)] + k 2 Z[f 2 (k)] Esempio: f(k) =3δ(k) 5 2 k I(t) Z[f] =3 5z z 2 Anticipo temporale : Z[f(k +)I(k)] = zz[f] zf() Esempio: f(k) =a k+ I(k) Z[f] =z z z a z = az z a z è detto anche operatore di anticipo unitario Ritardo temporale : Z[f(k )] = z Z[f]. Esempio: f(k) =I(k ) Z[f] = z z(z ) z è detto anche operatore di ritardo unitario Derivazione nella frequenza : Z[kf(k)] = z d dz Z[f] Esempio: f(k) =k I(k) Z[f] = z (z ) 2 A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-3

15 6.6 Trasformata zeta Teorema del valore iniziale : Z[f(k)] = F (z) f() = lim z F (z) Esempio: f(k) =I(k) k I(k) F (z) = f() = lim z F (z) = z z z (z ) 2 Teorema del valore finale : Z[f(k)] = F (z) f(+ ) lim t + Esempio: f(k) =I(k)+(.7) k I(t) F (z) = z z + f(t) = lim(z )F (z) z z z+.7 f(+ ) = lim z (z )F (z) = Witold Hurewicz (94-957) A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-4

16 6.7 Funzioni di Trasferimento - Tempo Discreto Considera il sistema a tempo discreto x(k +) = Ax(k)+Bu(k) x() = x y(k) = Cx(k)+Du(k) Applichiamo la trasformata zeta: zx(z) zx = AX(z)+BU(z) Y (z) = CX(z)+DU(z) dove X(z) =Z[x(k)], U(z) =Z[u(k)], Y (z) =Z[y(k)]. Esplicitando rispetto a x e U(z): X(z) = z(zi A) x +(zi A) BU(z) Y (z) = zc(zi A) x ßÞ Ð Y L (z) +(C(zI A) B + D)U(z) ßÞ Ð Y F (z) Y L (z)=trasformata zeta della risposta libera Y F (z)=trasformata zeta della risposta forzata Definizione: Lafunzione di trasferimento di un sistema lineare tempo discreto (A, B, C, D) è G(z) =C(zI A) B + D cioè il rapporto fra la trasf. zeta Y (z) dell uscita y(k) ela trasf. zeta U(z) dell ingresso per u(k) per condizione iniziale nulla x =. A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-5

17 6.7 Funzioni di Trasferimento - Tempo Discreto u(k) y(k) U(z) Y (z) A; B; C; D G(z) x = Esempio: Il sistema lineare ¾ x(k +) = y(k) =.5.5 ha per funzione di trasferimento x(k) ¾ x(k)+ u(k) G(z) = z +.5 z 2.25 Nota: Anche per i sistemi tempo-discreto, la funzione di trasferimento non dipende dall ingresso, ma è una proprietà del sistema lineare. A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-6

18 6.7 Funzioni di Trasferimento - Tempo Discreto Considera l equazione alle differenze con ingresso a n y(k n)+a n y(k n +)+ + a y(k ) + y(k) = b n u(k n)+ + b u(k ) Ponendo condizioni iniziali nulle, si ottiene la funzione di trasferimento equivalente G(z) = = b n z n + b n z n+ + + b z a n z n + a n z n+ + + a z + b z n + + b n z + b n z n + a z n + + a n z + a n Esempio: 3y(k 2) + 2y(k ) + y(k) =2u(k ) G(z) = 2z 3z 2 +2z + = 2z z 2 +2z +3 Nota: la stessa f.d.t. G(z) si ottiene dalla forma matriciale equivalente dell eq. alle differenze: G(z) = x(k +) = y(k) = ¾ z 2 x(k) ¾ x(k)+ 3 2 u(k) A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-7

19 6.7 Funzioni di Trasferimento - Tempo Discreto Alcune funzioni di trasferimento: Integratore x(k +) = x(k)+u(k) y(k) = x(k) U(z) z Y (z) Doppio integratore x (k +) = x (k)+x 2 (k) x 2 (k +) = x 2 (k)+u(k) y(k) = x (k) U(z) z 2 2z + Y (z) Oscillatore x (k +) = x (k) x 2 (k)+u(k) x 2 (k +) = x (k) y(k) = 2 x (k)+ 2 x 2(k) U(z) 2 z + 2 z 2 z + Y (z) 2 Risposta all impulso y(k) k A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-8

20 6.7 Funzioni di Trasferimento - Tempo Discreto Antitrasformata zeta Data la funzione di trasferimento G(z) = b mz m + b m z m + + b z + b (z p )(z p 2 )...(z p n ) (m <n) Analogamente alla trasformata di Laplace, possiamo scomporla in fratti semplici (Hp: p i p j ) G(z) = α z + + α nz z z p z p n dove α i èilresiduo di G(z) in p i α i = lim z p i (z p i )G(z) L antitrasformata zeta di G(z) è la funzione g(k) tale che Z[g(k)] = G(z): g(k) = α p k + + α n p k n I(k ) Esempio. G(z) = g(k) = δ(k)+ Þ m n Ð ß z 2 + m<n Þ Ð ß.5z +.5 z 2.5z +.5 =+ z 2.5z +.5 = + 4z z z 2.5z z (.5) k I(k ) A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-9

21 6.7 Funzioni di Trasferimento - Tempo Discreto Risposta all impulso Considera l ingresso impulsivo u(k) =δ(k) U(z) =. L uscita corrispondente y(k) è detta risposta all impulso. La trasformata zeta di y(k) è Y (z) =G(z) =G(z). Pertanto la risposta all impulso coincide con l antitrasformata g(k) della funzione di trasferimento G(z) Esempi Integratore u(k) = δ(k) y(k) = Z [ ]=I(k ) z U(z) z Y (z) 2 2 u(k) y(k) 2 5 k 2 5 k A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-2

22 6.8 Sistemi Algebricamente Equivalenti Rappresentazioni di stato algebricamente equivalenti Considera il sistema lineare x(k +) = Ax(k)+Bu(k) x() = x y(k) = Cx(k)+Du(k) Sia P una matrice invertibile e definiamo un cambio di coordinate z = P x Essendo x = Pz,siha z(k +) = P x(k +)=P (Ax(k)+Bu(k)) z() = P x = P AP z(k)+p Bu(k) y(k) = CPz(k)+Du(k) e quindi z(k +) = Āz(k)+ Bu(k) y(k) = Cz(k)+ Du(k) z() = P x dove Ā = P AP, B = P B, C = CP, D = D. I sistemi (A, B, C, D) e (Ā, B, C, D) si dicono algebricamente equivalenti A. Bemporad - Teoria dei Sistemi - A.A. 2/22 6-2

23 6.8 Sistemi Algebricamente Equivalenti Nota: Il legame ingresso/uscita deve rimanere immutato. Infatti Ḡ(z) = C(zI Ā) B + D = CP(zP IP P AP ) P B + D = CPP (zi A)PP B + D = C(zI A) B + D = G(z) Per sistemi a tempo continuo il ragionamento è del tutto analogo A. Bemporad - Teoria dei Sistemi - A.A. 2/

Sistemi LSTD: rappresentazione esplicita

Sistemi LSTD: rappresentazione esplicita Trasformata Zeta Outline Sistemi LSTD: rappresentazione esplicita x(k+1) = Ax(k)+Bu(k), x R n, u R m, k Z y(k) = Cx(k)+Du(k), y R p x R n : vettore delle variabili di stato; u R m : vettore dei segnali

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/45 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

APPUNTI SU TRASFORMATE DI LAPLACE E TRASFORMATE Z ERRATA CORRIGE

APPUNTI SU TRASFORMATE DI LAPLACE E TRASFORMATE Z ERRATA CORRIGE APPUNTI SU TRASFORMATE DI LAPLACE E TRASFORMATE Z ERRATA CORRIGE Proprietà 2.: L[y(t)] (2.29): u( + ) (2.65): n j= j i Prima della (2.69): A = lim s W (s) Nella Seione 2.6, usa sia t che k per indicare

Dettagli

Lezione VIII: Funzioni di Trasferimento

Lezione VIII: Funzioni di Trasferimento ANALISI E SIMULAZIONE DI SISTEMI DINAMICI Lezione VIII: Funzioni di Trasferimento Sistemi LTI - TC (TD): soluzione nel dominio della frequenza e del tempo Evoluzione libera ed evoluzione forzata Modi naturali

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004 COMPIO DI SEGNALI E SISEMI 8 Dicembre 4 Esercizio Si consideri il modello di stato a tempo discreto descritto dalle seguenti equazioni: x(k + = Ax(k + Bu(k = x(k + u(k, v(k = Cx(k = [ ] x(k, k Z + i Si

Dettagli

Rappresentazione in s dei sistemi lineari continui.

Rappresentazione in s dei sistemi lineari continui. Capitolo. INTRODUZIONE. Rappresentazione in s dei sistemi lineari continui. Applicando la trasformazione di Laplace alle funzioni di stato ed uscita di un sistema lineare: L e quindi: ẋ(t) = Ax(t) + Bu(t)

Dettagli

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.014-15 Prof. Silvia Strada Prima prova intermedia 8 Novembre 014 SOLUZIONE ESERCIZIO 1 punti: 8 su 3 Si consideri il sistema dinamico

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

Rappresentazione in s dei sistemi lineari continui.

Rappresentazione in s dei sistemi lineari continui. Capitolo. INTRODUZIONE. Rappresentazione in s dei sistemi lineari continui. Applicando la trasformazione di Laplace alle funzioni di stato ed uscita di un sistema lineare: L e quindi: ẋ(t) Ax(t)+Bu(t)

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace Elettronica e Telecomunicazioni Classe Quinta La trasformata di Laplace ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INFORMATICA INDICE Segnali canonici Trasformata di Laplace Teoremi sulla trasformata

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2

Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2 Controllo Digitale a.a. 2007-2008 Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2 Ing. Federica Pascucci Equazioni alle differenze (ricorsive) f legame tra le sequenze {e k } ed

Dettagli

Studio dei segnali nel dominio della frequenza. G. Traversi

Studio dei segnali nel dominio della frequenza. G. Traversi Studio dei segnali nel dominio della frequenza G. Traversi Segnali periodici e serie di Fourier Una funzione periodica f(t) di periodo T (purché integrabile) è esprimibile con una serie del tipo: f (t)

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

3. Sistemi Lineari a Tempo Discreto

3. Sistemi Lineari a Tempo Discreto . Sistemi Lineari a Tempo Discreto .5 y(t), y(kt) 4 y(t), y(kt).5.5.5.5.5 4 5 4 5 Campionamento di un segnale continuo Fig. (a) Segnale discreto Fig. (b) Esprimono relazioni fra variabili campionate ad

Dettagli

Complementi di Controllo Digitale

Complementi di Controllo Digitale Complementi di Controllo Digitale Alberto Bemporad Dipartimento di Ingegneria dell Informazione Università degli Studi di Siena bemporad@dii.unisi.it http://www.dii.unisi.it/~bemporad Corso di Laurea in

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica prof. Dipartimento di Informatica e Automazione Universitá degli Studi ROMA RE ROMA RE UNIVERSIÀ DEGLI SUDI 4 marzo 05 Rev. 0. INDICE Indice La rasfomata di Laplace.0.

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto Istituto d Istruzione Secondaria Superiore M.BATOLO PACHINO (S) APPUNTI DI SISTEMI AUTOMATICI 3 ANNO MODELLIZZAZIONE A cura del Prof S. Giannitto MODELLI MATEMATICI di SISTEMI ELEMENTAI LINEAI, L, C ivediamo

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Appunti del corso di Controllo Digitale

Appunti del corso di Controllo Digitale Università degli Studi di Siena Sede di Arezzo Corso di Laurea triennale in Ingegneria dell Automazione Appunti del corso di Controllo Digitale A cura di Gianni Bianchini Indice Glossario, abbreviazioni

Dettagli

Analisi dei sistemi di controllo a segnali campionati

Analisi dei sistemi di controllo a segnali campionati Analisi dei sistemi di controllo a segnali campionati Sistemi di controllo (già analizzati) Tempo continuo (trasformata di Laplace / analisi in frequenza) C(s) controllore analogico impianto attuatori

Dettagli

9. Risposta in Frequenza

9. Risposta in Frequenza 9. Risposta in Frequenza 9 Risposta in Frequenza u(t) U(s) G(s) y(t) Y(s) Ricorda: la funzione di trasferimento di un sistema lineare tempo continuo è il rapporto fra la trasf. di Laplace Y (s) dell uscita

Dettagli

La funzione di trasferimento

La funzione di trasferimento Sommario La funzione di trasferimento La funzione di trasferimento Poli e zeri della funzione di trasferimento I sistemi del primo ordine Esempi La risposta a sollecitazioni La funzione di trasferimento

Dettagli

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO MOD. 1 Sistemi di controllo e di regolazione. Si tratta di un ripasso di una parte di argomenti effettuati l anno scorso. Introduzione. Schemi a blocchi di

Dettagli

ESERCITAZIONE (7-11-13) Ing. Stefano Botelli

ESERCITAZIONE (7-11-13) Ing. Stefano Botelli FONDAMENTI di AUTOMATICA ESERCITAZIONE (7-11-13) Ing. Stefano Botelli NB in presenza di matrici 3x3 bisogna intuire che esiste un metodo risolutivo particolare perchè non verrà mai richiesto a lezione

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-200 p. /32 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento,

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

La trasformata di Laplace

La trasformata di Laplace La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata di Laplace 1 / 34 Outline 1 La trasformata di

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Appunti del corso di Controllo Digitale

Appunti del corso di Controllo Digitale Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Corso di Laurea in Ingegneria Informatica e dell Informazione (SA) Appunti del corso di Controllo Digitale A cura di Gianni Bianchini

Dettagli

Soluzione per sistemi dinamici LTI TC Esercizi risolti

Soluzione per sistemi dinamici LTI TC Esercizi risolti Eserciio per sistemi dinamici LTI TC Esercii risolti Dato il seguente sistema dinamico LTI a tempo continuo: [ [ 5 ẋ(t) x(t) + u(t) 4 8 y(t) [ x(t) + 8u(t) determinare l espressione analitica del dello

Dettagli

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Controlli Automatici (AUT) - 09AKSBL Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Sistemi dinamici - Introduzione Concetto di sistema. Si parla

Dettagli

Definizione di Sistema Dinamico

Definizione di Sistema Dinamico Capitolo 1. INTRODUZIONE 1.1 Definizione di Sistema Dinamico Esistono vari tipi di sistemi dinamici: tempo continui, tempo discreti, lineari, non lineari, a variabili concentrate, a variabili distribuite,

Dettagli

Rappresentazione nello spazio degli stati

Rappresentazione nello spazio degli stati Chapter 1 Rappresentazione nello spazio degli stati La modellazione di un sistema lineare di ordine n, fornisce un insieme di equazioni differenziali che una volta trasformate nel dominio discreto, possono

Dettagli

Rappresentazioni e parametri della funzione di trasferimento

Rappresentazioni e parametri della funzione di trasferimento FUNZIONE DI TRASFERIMENTO Definizione e proprietà Rappresentazioni e parametri della funzione di trasferimento Risposta allo scalino Illustrazioni dal Testo di Riferimento per gentile concessione degli

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del corso di Controllo digitale Corso di Laurea in Ingegneria Informatica e dell Informazione Università di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte II Sistemi lineari a tempo discreto

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande Esame scritto di Teoria dei Sistemi - Modena - Giugno 5 - Domande Per ciascuno dei seguenti test a risposta multipla segnare con una crocetta le affermazioni che si ritengono giuste. Alcuni test sono seguiti

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/ giugno 2014

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/ giugno 2014 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/2014 30 giugno 2014 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

9 Metodo della trasformata di Laplace per l analisi delle linee di trasmissione

9 Metodo della trasformata di Laplace per l analisi delle linee di trasmissione 9 Metodo della trasformata di Laplace per l analisi delle linee di trasmissione Introduzione Nei paragrafi precedenti sono state illustrate le tecniche di analisi per esaminare il comportamento di circuiti

Dettagli

I prova in itinere di Fondamenti di Automatica A.A Novembre 2011 Prof. SILVIA STRADA Tempo a disposizione: 1 h. 45 m.

I prova in itinere di Fondamenti di Automatica A.A Novembre 2011 Prof. SILVIA STRADA Tempo a disposizione: 1 h. 45 m. I prova in itinere di Fondamenti di Automatica A.A. - 8 Novembre Prof. SILVIA STRADA Tempo a disposizione: h. 45 m. SOLUZIONE N.B. Svolgere i vari punti nello spazio che segue ogni esercizio. ESERCIZIO

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Denis Nardin January 2, 2010 1 Equazioni differenziali In questa sezione considereremo le proprietà delle soluzioni del problema di Cauchy. Da adesso in poi (PC) indicherà

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Gianluca Mereu, Alessandro Giua {gianluca.mereu,giua}@diee.unica.it 07/04/207 Soluzione Esercizio. Si risponda in modo chiaro ed

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Data una funzione f : [a, b] R si cerca α [a, b] tale che f (α) = 0. I metodi numerici per la risoluzione di questo problema sono metodi iterativi. Teorema Data una funzione continua

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.4 Serie in campo complesso 1.4.1 Serie di potenze Una serie di potenze è una serie del tipo a k (z z 0 ) k. Per le serie di potenze in campo complesso valgono teoremi analoghi

Dettagli

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu mattia.zanella@unife.it www.mattiazanella.eu Department of Mathematics and Computer Science, University of Ferrara, Italy Ferrara, 1 Maggio 216 Programma della lezione Seminario II Equazioni differenziali

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es.

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es. Equilibrio di sistemi dinamici Esercizio (derivato dall es. #8 del 8/9/22) Dato il sistema dinamico, non lineare, a tempo continuo, descritto dalle seguenti equazioni: ẋ (t) = x (t).5x 2 2 (t)+4u(t) ẋ

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 13

Dettagli

Osservabilità e ricostruibilità

Osservabilità e ricostruibilità Capitolo. TEORIA DEI SISTEMI 5. Osservabilità e ricostruibilità Osservabilità: il problema dell osservabilità consiste nel determinare lo stato iniziale x(t ) mediante osservazioni degli ingressi u(t)

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

CENNI SUL CONTROLLO DIGITALE

CENNI SUL CONTROLLO DIGITALE 1.1. MODELLISICA - Modellistica dinamica 2.1 1 CENNI SUL CONROLLO DIGIALE SISEMI DI CONROLLO DIGIALE: sistemi di controllo in retroazione in cui è presente un calcolatore digitale e quindi una elaborazione

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

Identificazione di sistemi dinamici

Identificazione di sistemi dinamici Scuola universitaria professionale della Svizzera italiana SUP SI Dipartimento Tecnologie Innovative Identificazione di sistemi dinamici Ivan Furlan 21 dicembre 2011 Identificazione di sistemi dinamici

Dettagli

Capitolo 4. Sistemi lineari tempo-invarianti: analisi nel dominio della frequenza

Capitolo 4. Sistemi lineari tempo-invarianti: analisi nel dominio della frequenza Capitolo 4 Sistemi lineari tempo-invarianti: analisi nel dominio della frequenza 1. Introduzione In questo capitolo ci occuperemo dell analisi nel dominio della frequenza di sistemi dinamici lineari tempo-invarianti.

Dettagli

Capitolo 1. Integrali multipli. 1.1 Integrali doppi su domini normali. Definizione 1.1.1 Si definisce dominio normale rispetto all asse

Capitolo 1. Integrali multipli. 1.1 Integrali doppi su domini normali. Definizione 1.1.1 Si definisce dominio normale rispetto all asse Contenuti 1 Integrali multipli 2 1.1 Integralidoppisudomininormali... 2 1.2 Cambiamento di variabili in un integrale doppio. 6 1.3 Formula di Gauss-Green nel piano e conseguenze. 7 1.4 Integralitripli...

Dettagli

RICHIAMI MATEMATICI. x( t)

RICHIAMI MATEMATICI. x( t) 0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri

Dettagli

Elementi di Automazione Lezione 3 - Classificazione dei sistemi dinamici - Richiami di algebra delle matrici

Elementi di Automazione Lezione 3 - Classificazione dei sistemi dinamici - Richiami di algebra delle matrici Elementi di Automazione Lezione 3 - - Ing. Gianmaria De Tommasi A.A. 2006/07 1 2 Modello implicito I-S-U ẋ(t) = f ( x(t), u(t), t ), x(t 0 ) = x 0 y(t) = η ( x(t), u(t), t ) oppure x(k + 1) = f ( x(k),

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ settembre 2012

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ settembre 2012 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/2012 10 settembre 2012 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel

Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel CONTROLLI AUTOMATICI LS Ingegneria Informatica Sistemi a Dati Campionati Prof. DEIS-Università di Bologna Tel. 51 29334 e-mail: claudio.melchiorri@unibo.it http://www-lar lar.deis.unibo.it/people/cmelchiorri

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

Sistemi dinamici lineari

Sistemi dinamici lineari Capitolo 1. INTRODUZIONE 1.19 Sistemi dinamici lineari La funzione di stato che descrive un sistema dinamico lineare, è rappresentabile in forma matriciale nel seguente modo: Per sistemi continui: Per

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Punti di equilibrio: sistemi tempo continui

Punti di equilibrio: sistemi tempo continui Capitolo 3 ANALISI DELLA STABILITÀ 31 Punti di equilibrio: sistemi tempo continui Si consideri il seguente sistema tempo continuo: ẋ(t) A x(t) + B u(t) y(t) C x(t) + D u(t) I punti di equilibrio x 0 del

Dettagli

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale SISTEMI A DATI CAMPIONATI: INTRODUZIONE + e k u k u(t) r k C D/A P y k TMP A/D Trasduttore y(t) Schema di base di un sistema di controllo digitale A/D: convertitore analogico digitale C: controllore digitale

Dettagli