MATEMATICA DISCRETA. C. L. in Informatica e Tecnologie per la Produzione del Software Corso B Bari, 19 Gennaio 2017 Traccia 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA DISCRETA. C. L. in Informatica e Tecnologie per la Produzione del Software Corso B Bari, 19 Gennaio 2017 Traccia 1"

Transcript

1 Bari, 9 Gennaio 207 Traccia Esercizio Sia assegnata la relazione Z Z tale che 8a, b 2 Z a b () (7a +4b) () Verificare che è una relazione di equivalenza (2) Determinare la classe di equivalenza [5] Esercizio 2 Si consideri la successione {a n } n2n definita per ricorrenza da 8 < a 0 =7, a : =, a n =2a n a n 2 +2, se n > 2 Stabilire se {a n } n2n ammette come formula chiusa la successione {b n } n2n,doveb n = n 2 +3n +7 per ogni n 2 N Esercizio 3 Dopo aver enunciato il Teorema Cinese dei Resti, si risolva (se possibile) il seguente sistema di congruenze lineari 8 < 6x 8 (mod 6) 3x 27 (mod 5) : 5x 3 (mod 7) Esercizio 4 Stabilire quante stringhe diverse di 9 lettere possono essere ottenute annagrammando le seguenti parole: () LUMACHINE, (2) CONTRATTO Esercizio 5 Si consideri in S 9 la seguente permutazione f = () Scrivere f come prodotto di cicli disgiunti e determinarne il periodo (2) Determinare la parità di f (3) Calcolare f e determinare il sottogruppo di S 9 generato da f Esercizio 6 Stabilire se esiste, ed in caso a ermativo rappresentarlo graficamente, un albero avente 2 vertici nelle seguenti condizioni: () un vertice di valenza 5, due vertici di valenza 3, due vertici di valenza 2 ed i restanti vertici di valenza ; (2) tre vertici di valenza 4, un vertice di valenza 3, un vertice di valenza 2 ed i restanti vertici di valenza

2 Bari, 2 Febbraio 207 Traccia Risolvere, motivando le risposte, i seguenti esercizi Esercizio Date tre proposizioni P, Q e R, si scriva la tabella di verità di Inoltre, stabilire se la proposizione è vera e scriverne la negazione ( P ) ^ (Q =) R) 8x 2 R 9y 2 R tale che xy =3 Esercizio 2 Verificare mediante il principio di induzione che per ogni n 2 N la seguente uguaglianza è vera nx 2q 2 n(n + )(2n + ) = 3 q=0 Esercizio 3 Dopo aver ricordato la definizione della funzione di Eulero ed enunciato il Teorema di Eulero che la coinvolge, calcolare il resto della divisione per 84 di 34 5 Esercizio 4 Stabilire se esiste un albero avente 2 vertici di cui due vertici di valenza 5, un vertice di valenza 4, due vertici di valenza 3, quattro vertici di valenza 2 ed i restanti vertici di valenza In caso a ermativo, disegnare due grafi non isomorfi soddisfacenti tali condizioni Esercizio 5 Si consideri l insieme A = Q Q esia : A A (a, b) (c, d) =(a 5+c, 2bd) 8(a, b), (c, d) 2 A! A l operazione definita da () Stabilire se l operazione è commutativa ed associativa (2) Determinare, se esiste, l elemento neutro e stabilire se (A, ) è un gruppo abeliano (3) Determinare, se esiste, l inverso di (3, 3) Esercizio 6 Siano A 2 Mat(3 3, R) eb 2 Mat(2 3, R) le seguenti matrici 0 0 A 2 0 A, B = () Calcolare, se possibile, i prodotti AB e BA (2) Calcolare, se possibile, i determinanti di A e B (3) Calcolare, se possibile, le matrici inverse di A e B

3 Bari, 7 Febbraio 207 Traccia Risolvere, motivando le risposte, i seguenti esercizi Esercizio Date tre proposizioni P, Q e R, si scriva la tabella di verità di (P _ Q) =) R Esercizio 2 Dimostrare mediante il principio di induzione che 5 ( n + 4) 8n 2 N Esercizio 3 Stabilire se la seguente equazione diofantea è compatibile 256x + 36y = 56 ed, eventualmente, determinarne tutte le soluzioni intere Esercizio 4 Si consideri un insieme di 24 persone, di cui 4 donne e 0 uomini () Stabilire quanti sono i possibili sottoinsiemi composti da 8 persone (2) Stabilire quanti sottoinsiemi composti da 8 persone contengono almeno una donna (3) Determinare in quanti modi diversi è possibile ripartire le 24 persone in tre sottoinsiemi da 8 persone ciascuno Esercizio 5 Sia : Z 2 Z 2! Z 2 l operazione definita da a b = a + b + 5 () Stabilire se l operazione è commutativa ed associativa (2) Determinare l elemento neutro e stabilire se (Z 2, ) è un gruppo abeliano (3) Calcolare l elemento (4 5) 2 Esercizio 6 Siano A 2 Mat(4 2, R) eb 2 Mat(2 4, R) le seguenti matrici 0 A = B 0 0 A, B = 2 2 () Determinare le matrici C := AB e D := BA (2) Calcolare il determinante di C (3) Ricordare la definizione di matrice invertibile ed enunciare il teorema che caratterizza le matrici invertibili mediante il loro determinante (4) Calcolare, se possibile, la matrice inversa di D

4 Bari, 3 Luglio 207 Traccia Risolvere, motivando le risposte, i seguenti esercizi Esercizio Sia assegnata la relazione Z Z tale che 8a, b 2 Z a b () 3 (2a + b) () Verificare che è una relazione di equivalenza (2) Determinare la classe di equivalenza [0] Esercizio 2 Verificare mediante il principio di induzione che per ogni n 2 N la seguente uguaglianza è vera nx (6q 2) = 3n 2 + n 2 q=0 Esercizio 3 Determinare tutte le soluzioni intere del seguente sistema di congruenze lineari 8 < 4x 7 (mod 7) 3x 4 (mod 5) : 9x 27 (mod 2) Esercizio 4 Stabilire quante stringhe diverse di 6 lettere possono essere ottenute annagrammando la parola PRESTO Stabilire quante stringhe diverse di 2 lettere possono essere ottenute annagrammando la parola RITARDATARIO Esercizio 5 Si consideri l insieme A = Q Q esia : A A (a, b) (c, d) =(4ac, b + d + ) 8(a, b), (c, d) 2 A () Stabilire se l operazione è commutativa ed associativa (2) Determinare, se esiste, l elemento neutro (3) Determinare gli elementi invertibili di A e calcolare l inverso di (, )! A l operazione definita da Esercizio 6 Scrivere la definizione di grafo semplice e di isomorfismo di grafi Stabilire se esiste un albero avente 9 vertici di cui un vertice di valenza 5, un vertice di valenza 4, tre vertici di valenza 3, quattro vertici di valenza 2 ed i restanti vertici di valenza In caso a ermativo, disegnare due grafi non isomorfi soddisfacenti tali condizioni

5 Bari, 5 Settembre 207 Traccia Risolvere, motivando le risposte, i seguenti esercizi Esercizio Date tre proposizioni P, Q e R, si scriva la tabella di verità di Inoltre, stabilire se la proposizione è vera e scriverne la negazione (P ^ Q) =) R 8x 2 Z 9y 2 R e 9n 2 N tali che x = p y 2 + n Esercizio 2 Si consideri la successione {a n } n2n definita per ricorrenza da a0 =0, a n =3a n 2n +5, se n > Stabilire se {a n } n2n ammette come formula chiusa la successione {b n } n2n,doveb n =3 n + n Esercizio 3 Stabilire se la seguente equazione diofantea è compatibile 23x + 77y = 2 ed, eventualmente, determinarne tutte le soluzioni intere Esercizio 4 Si consideri un insieme di persone costituito da 7 tedeschi, 6 francesi e 5 spagnoli, dove i tedeschi sono tutti uomini, le donne francesi sono 3 e le donne spagnole sono 2 () Stabilire quanti sono i possibili comitati diversi formati da 5 persone (2) Stabilire quanti sono i possibili comitati diversi formati da 3 persone con un rappresentante per ogni nazionalità (3) Stabilire quanti sono i possibili comitati diversi formati da 3 persone con un rappresentante per ogni nazionalità ed esattamente una donna (4) Stabilire quanti sono i possibili comitati diversi formati da 3 persone con un rappresentante per ogni nazionalità ed almeno una donna Esercizio 5 Si consideri in S 8 la seguente permutazione f = () Scrivere f come prodotto di cicli disgiunti e determinarne il periodo (2) Determinare la parità di f (3) Calcolare esplicitamente gli elementi del sottogruppo F di S 8 generato da f e determinare il periodo di ciascuno di essi (4) Enunciare il Teorema di Lagrange

6 2 Esercizio 6 Siano A 2 Mat(3 2, R) eb 2 Mat(3 3, R) le seguenti matrici A 4 A, B 3 2 A () Calcolare, se possibile, i prodotti AB e BA (2) Calcolare, se possibile, i determinanti di A e B (3) Calcolare, se possibile, le matrici inverse di A e B

7 Bari, 2 Settembre 207 Traccia Risolvere, motivando le risposte, i seguenti esercizi Esercizio Date tre proposizioni P, Q e R, si scriva la tabella di verità di (P _ Q) =) (Q ^ R) Esercizio 2 Dimostrare mediante il principio di induzione che 7 (8 n + 6) 8n 2 N Esercizio 3 Dopo aver ricordato la definizione della funzione di Eulero ed enunciato il Teorema di Eulero che la coinvolge, calcolare il resto della divisione per 72 di Esercizio 4 Stabilire se esiste, ed in caso a ermativo rappresentarlo graficamente, un albero avente 7 vertici nelle seguenti condizioni: () due vertici di valenza 4, tre vertici di valenza 3, tre vertici di valenza 2 ed i restanti vertici di valenza ; (2) un vertice di valenza 5, due vertici di valenza 4, due vertici di valenza 3, tre vertici di valenza 2 ed i restanti vertici di valenza Esercizio 5 Sia : Z 0 Z 0! Z 0 l operazione definita da a b = a + b + 3 () Stabilire se l operazione è commutativa ed associativa (2) Determinare l elemento neutro e stabilire se (Z 0, ) è un gruppo abeliano (3) Calcolare l elemento (3 5) 2 Esercizio 6 Siano A 2 Mat(2 2, R), B 2 Mat(4 4, R) ec 2 Mat(4 2, R) le seguenti matrici A =, B = B C A, C = B A () Calcolare, se possibile, le matrici BC e CB (2) Calcolare il determinante di B (3) Calcolare, se possibile, la matrice inversa di A

8 Bari, 5 Novembre 207 Traccia Risolvere, motivando le risposte, i seguenti esercizi Esercizio Sia assegnata la relazione Z Z tale che 8a, b 2 Z a b () 7 (2a +5b) () Verificare che è una relazione di equivalenza (2) Determinare la classe di equivalenza [0] Esercizio 2 Verificare mediante il principio di induzione che nx 3(k 2 + k) =n(n + )(n + 2) 8n 2 N k=0 Esercizio 3 Dopo aver enunciato il Teorema Cinese dei Resti, si determinino tutte le soluzioni intere del seguente sistema di congruenze lineari 8 < : 3x 2 (mod 5) 4x 8 (mod 6) 3x 9 (mod 4) Esercizio 4 Si consideri un insieme di 2 studenti, di cui 5 maschi e 7 femmine () Stabilire quanti sono i possibili sottoinsiemi composti da 3 persone (2) Stabilire quanti sottoinsiemi composti da 3 persone contengono almeno una studentessa (3) Determinare in quanti modi diversi è possibile ripartire le 2 persone in quattro sottoinsiemi da 3 persone ciascuno Esercizio 5 Si consideri in S 9 la seguente permutazione f = () Scrivere f come prodotto di cicli disgiunti e determinarne il periodo (2) Determinare la parità di f (3) Calcolare f e determinare il sottogruppo di S 9 generato da f Esercizio 6 Stabilire se esiste, ed in caso a ermativo rappresentarlo graficamente, un albero avente 5 vertici nelle seguenti condizioni: () un vertice di valenza 4, due vertici di valenza 3, quattro vertici di valenza 2 ed i restanti vertici di valenza ; (2) tre vertici di valenza 4, un vertice di valenza 3, due vertici di valenza 2 ed i restanti vertici di valenza

9 Bari, 8 Aprile 208 Traccia Risolvere, motivando le risposte, i seguenti esercizi Esercizio Sia assegnata la relazione Z Z tale che 8a, b 2 Z a b () (8a +3b) () Verificare che è una relazione di equivalenza (2) Determinare la classe di equivalenza [0] Esercizio 2 Si consideri la successione {a n } n2n definita per ricorrenza da a0 =, a n = a n +4n 5, se n > Stabilire se {a n } n2n ammette come formula chiusa la successione {b n } n2n,doveb n =2n 2 3n + Esercizio 3 Calcolare il resto della divisione per 56 di Esercizio 4 Stabilire quante stringhe diverse possono essere ottenute utilizzando comtemporaneamente e senza ripetizioni tutte le lettere che appaiono della parola STEGOSAURO Stabilire quante stringhe diverse di 2 lettere possono essere ottenute annagrammando la parola PTERODATTILO Esercizio 5 Sia : Z 9 Z 9! Z 9 l operazione definita da a b = a + b + 5 () Stabilire se l operazione è commutativa ed associativa (2) Determinare l elemento neutro e stabilire se (Z 9, ) è un gruppo abeliano (3) Calcolare l elemento (3 2) 2 Esercizio 6 Siano A 2 Mat(2 4, R) eb 2 Mat(4 2, R) le seguenti matrici A =, B = B 2 0 A 0 () Determinare le matrici C := AB e D := BA (2) Calcolare il determinante di D (3) Ricordare la definizione di matrice invertibile ed enunciare il teorema che caratterizza le matrici invertibili mediante il loro determinante (4) Calcolare, se possibile, la matrice inversa di A

C.L. Informatica, M-Z Bari, 18 Gennaio 2017 Traccia: 1

C.L. Informatica, M-Z Bari, 18 Gennaio 2017 Traccia: 1 Bari, 18 Gennaio 2017 Traccia: 1 Esercizio 1 Applicando il principio di induzione stabilire se è vero che, per ogni n 2 N, si ha n+1 1 X 2 i = 3 2 n+1 2 3 2 3 i=0 Esercizio 2 Si dia la definizione di funzione

Dettagli

C.L. Informatica, M-Z Bari, 12 Gennaio 2016 Traccia: 1

C.L. Informatica, M-Z Bari, 12 Gennaio 2016 Traccia: 1 Bari, 2 Gennaio 206 Traccia: Esercizio. Scrivere la definizione di funzione suriettiva. Dimostrare che la composizione di due funzioni suriettive è una funzione suriettiva. Esercizio 2. () Stabilire se

Dettagli

Programma del Corso di Matematica Discreta (Elementi) lettere P-Z anno accademico 2004/2005

Programma del Corso di Matematica Discreta (Elementi) lettere P-Z anno accademico 2004/2005 Programma del Corso di Matematica Discreta (Elementi) lettere P-Z anno accademico 2004/2005 27 gennaio 2005 1. Logica 2. Insiemi e Funzioni 3. Numeri naturali 4. Numeri interi 5. Relazioni 6. Classi di

Dettagli

Altri esercizi assegnati negli esoneri degli scorsi anni

Altri esercizi assegnati negli esoneri degli scorsi anni Altri esercizi assegnati negli esoneri degli scorsi anni Esercizi sul principio di induzione 1. Utilizzando il principio di induzione si dimostri che, per ogni numero naturale positivo n, risulta: Esercizi

Dettagli

Matematica Discreta e Logica Matematica ESERCIZI

Matematica Discreta e Logica Matematica ESERCIZI Matematica Discreta e Logica Matematica ESERCIZI Proff. F. Bottacin e C. Delizia Esercizio 1. Scrivere la tavola di verità della seguente formula ben formata e determinare se essa è una tautologia: A ((A

Dettagli

Programma del Corso di Matematica Discreta (Elementi) anno accademico 2005/2006

Programma del Corso di Matematica Discreta (Elementi) anno accademico 2005/2006 Programma del Corso di Matematica Discreta (Elementi) lettere M-Z anno accademico 2005/2006 2 febbraio 2006 1. Logica 2. Insiemi e Funzioni 3. Numeri naturali 4. Numeri interi 5. Relazioni 6. Classi di

Dettagli

Proposizione 1 Sia (G, ) un gruppo, g G. delle seguenti possibilità: Allora si ha una. 1. h, k Z g h g k < g > è infinito

Proposizione 1 Sia (G, ) un gruppo, g G. delle seguenti possibilità: Allora si ha una. 1. h, k Z g h g k < g > è infinito Proposizione 1 Sia (G, ) un gruppo, g G. delle seguenti possibilità: Allora si ha una 1. h, k Z g h g k < g > è infinito 2. h, k Z g h = g k < g > è finito. Definizione 2 Sia (G, ) un gruppo, g G. Si dice

Dettagli

Algebra Proff. A. D Andrea e P. Papi Quarto scritto

Algebra Proff. A. D Andrea e P. Papi Quarto scritto Algebra Proff. A. D Andrea e P. Papi Quarto scritto LUGLIO 8 Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 6.5 6.5 3 6.5 4 6.5 5 6.5 otale 3 Occorre motivare le risposte. Una soluzione

Dettagli

Esame di Matematica Discreta Laurea Triennale in Informatica e Comunicazione Digitale Sede di Taranto 28/9/2005

Esame di Matematica Discreta Laurea Triennale in Informatica e Comunicazione Digitale Sede di Taranto 28/9/2005 Sede di Taranto 28/9/2005 1. Dati gli insiemi A = {1, 2, 3, 4, 5} e B = {a, b, c}, determinare tutte le applicazioni surgettive f : A B tali che f(2) = f(3) = a f(x) a per x {2, 3}. 2. Risolvere il sistema

Dettagli

ALGEBRA C. MALVENUTO

ALGEBRA C. MALVENUTO ALGEBRA PRIMO ESONERO CANALE A-L 18 NOVEMBRE 011 C. MALVENUTO Esercizio 1. (8 punti Sia H la famiglia di tutti i sottogruppi del gruppo additivo Z 0 delle classi resto modulo 0. 1. Elencare tutti gli elementi

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2017/2018 Docente: Alberto Canonaco Richiami su insiemi e funzioni: composizione di funzioni e associatività della composizione; immagine attraverso una funzione di un sottoinsieme

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Università Degli Studi Di Bari Facoltà di Scienze MM.FF.NN

Università Degli Studi Di Bari Facoltà di Scienze MM.FF.NN Università Degli Studi Di Bari Facoltà di Scienze MM.FF.NN Corso di Laurea Triennale in Informatica Materiale didattico. Esercizi Indirizzo corso di Laurea Informatica ICD ITPS Brindisi Taranto Questo

Dettagli

Programma definitivo del corso MATEMATICA DISCRETA C.L.T. Informatica a.a. 2016/17

Programma definitivo del corso MATEMATICA DISCRETA C.L.T. Informatica a.a. 2016/17 Programma definitivo del corso MATEMATICA DISCRETA C.L.T. Informatica a.a. 2016/17 DOCENTE: Luigia Di Terlizzi, Studio n. 19, 3 o piano, Dip. di Matematica anno di corso: primo, semestre: primo N o ore

Dettagli

ALGEBRA (A-L) ( )

ALGEBRA (A-L) ( ) ALGEBRA (A-L) (2014-15) SCHEDA 3 Strutture algebriche 1.STRUTTURE ALGEBRICHE Sia (M, ) un monoide con unità 1 M e sia a M. Le iterazioni della operazione. sono definite da: a 0 = 1 M, a n+1 =a a n. 1.1.Dimostrare

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione

Dettagli

Matematica Discreta Classe 1 Dott. C. Delizia 24 Gennaio 2007

Matematica Discreta Classe 1 Dott. C. Delizia 24 Gennaio 2007 Matematica Discreta Classe 1 Dott. C. Delizia 24 Gennaio 2007 Cognome Nome Matricola Esercizio 1. Siano A, B e C insiemi. Si dimostri che (A B) \ C = (A \ C) (B \ C). Si dimostri che in generale non vale

Dettagli

Corso Matematica Discreta Anno accademico Lista domande per l orale breve.

Corso Matematica Discreta Anno accademico Lista domande per l orale breve. Corso Matematica Discreta Anno accademico 2014-2015 Lista domande per l orale breve. 1. Dimostrare una delle leggi che coinvolgono l intersezione, l unione, il complementare (associativa, distributiva

Dettagli

NO, ma la frequenza è fortemente consigliata Lingua di erogazione. Nome Cognome Salvatore de Candia

NO, ma la frequenza è fortemente consigliata Lingua di erogazione. Nome Cognome Salvatore de Candia Principali informazioni A.A. 2018-2019 sull insegnamento Titolo insegnamento Matematica Discreta (Corso B) Corso di studio Informatica e Tecnologie per la Produzione del Software Crediti formativi 7+2=9

Dettagli

Algebra Proff. A. D Andrea e P. Papi Primo scritto

Algebra Proff. A. D Andrea e P. Papi Primo scritto Algebra Proff. A. D Andrea e P. Papi Primo scritto 6 febbraio 8 Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 6 6 3 6 4 6 5 6 otale 3 Occorre motivare le risposte. Una soluzione

Dettagli

PROGRAMMA DETTAGLIATO DI MATEMATICA DISCRETA A.A. 2003/04 PROF. SSA FARINOLA \ VERROCA

PROGRAMMA DETTAGLIATO DI MATEMATICA DISCRETA A.A. 2003/04 PROF. SSA FARINOLA \ VERROCA PROGRAMMA DETTAGLIATO DI MATEMATICA DISCRETA A.A. 2003/04 PROF. SSA FARINOLA \ VERROCA 1. LOGICA MATEMATICA E STUDIO DELLE PROPOSIZIONI 2. VALORI DI VERITA 3. LOGICA PROPOSIZIONALE Proposizioni Atomiche

Dettagli

Programma definitivo del corso MATEMATICA DISCRETA C.L.T. Informatica (A) a.a. 2016/17. SITO UFFICIALE:

Programma definitivo del corso MATEMATICA DISCRETA C.L.T. Informatica (A) a.a. 2016/17. SITO UFFICIALE: Programma definitivo del corso MATEMATICA DISCRETA C.L.T. Informatica (A) a.a. 2016/17 DOCENTE: LUIGIA DI TERLIZZI SITO UFFICIALE: http://www.dm.uniba.it/ diterlizzi anno di corso: primo semestre: primo

Dettagli

Fondamenti di Matematica del discreto

Fondamenti di Matematica del discreto Fondamenti di Matematica del discreto M1 - Insiemi numerici 25 gennaio 2013 - Laurea on line Esercizio 1. Dire, motivando la risposta, se è possibile scrivere 3 come combinazione lineare di 507 e 2010,

Dettagli

ALGEBRA /2009 Prof. Fabio Gavarini. Sessione estiva anticipata prova scritta del 23 Giugno 2009

ALGEBRA /2009 Prof. Fabio Gavarini. Sessione estiva anticipata prova scritta del 23 Giugno 2009 ALGEBRA 1 2008/2009 Prof. Fabio Gavarini Sessione estiva anticipata prova scritta del 23 Giugno 2009 Svolgimento completo N.B.: lo svolgimento qui presentato è molto lungo... Questo non vuol dire che lo

Dettagli

Indice analitico. B Base, 43 Bezout identità di, 15 per polinomi, 39 Binomio teorema del di Newton, 14, 35 ingenuo, 18, 45

Indice analitico. B Base, 43 Bezout identità di, 15 per polinomi, 39 Binomio teorema del di Newton, 14, 35 ingenuo, 18, 45 Indice analitico A Abeliano gruppo, 24 Algebrico(a) elemento, 46 estensione, 46 Algoritmo di Euclide, 15 di Euclide per polinomi, 39 Anello(i), 33 commutativo, 33 con unità, 33 di polinomi, 36 generato,

Dettagli

Tempo a disposizione. 90 minuti. 1 (a) [3 punti] Si consideri la successione (a n ) n N definita per ricorrenza nel modo seguente:

Tempo a disposizione. 90 minuti. 1 (a) [3 punti] Si consideri la successione (a n ) n N definita per ricorrenza nel modo seguente: Dipartimento di Matematica e Informatica Anno Accademico 2016-2017 Corso di Laurea in Informatica (L-31) Prova in itinere di Matematica Discreta (12 CFU) 17 Febbraio 2017 A1 Tempo a disposizione 90 minuti

Dettagli

Applicazioni dell Algoritmo di Euclide

Applicazioni dell Algoritmo di Euclide Applicazioni dell Algoritmo di Euclide Applicazione dell Algoritmo di Euclide al calcolo del Massimo Comune Divisore tra due interi Mostriamo un esempio di come l algoritmo di Euclide permetta di calcolare

Dettagli

Matematica Discreta Classe 1 Dott. C. Delizia 15 Luglio 2008

Matematica Discreta Classe 1 Dott. C. Delizia 15 Luglio 2008 Matematica Discreta Classe 1 Dott. C. Delizia 15 Luglio 2008 Cognome Nome Matricola Esercizio 1. Siano S, T e V. Motivando la risposta, si stabilisca se è vero che S V T V = S T. Esercizio 2. Utilizzando

Dettagli

Il prodotto tra matrici non è commutativo. Nelle notazioni precedenti, ponendo n = p e m = q si hanno:

Il prodotto tra matrici non è commutativo. Nelle notazioni precedenti, ponendo n = p e m = q si hanno: L anello delle matrici Esempio. Siano A = [ ] 0 1 3 0 2 1, B = 1 2 0 0 1 2 3 4, 1 0 calcolare AB e BA. Osservazioni Siano A Mat m,n (K) e B Mat p,q (K). Il prodotto AB è definito se n = p. Si ha AB Mat

Dettagli

CORSO DI MATEMATICA DISCRETA I (ALGEBRA) Prof. Paolo Papi ESERCIZI

CORSO DI MATEMATICA DISCRETA I (ALGEBRA) Prof. Paolo Papi ESERCIZI CORSO DI MATEMATICA DISCRETA I (ALGEBRA) Prof. Paolo Papi ESERCIZI ). Siano A, B, C insiemi. Provare che (A B) C = A (B C) A (B C) =(A B) (A C) C(A B) =C(A) C(B). 2). Definiamo la differenza simmetrica

Dettagli

$marina/did/md

$marina/did/md Matematica Discreta (elementi) E-O CdL Informatica Relazioni di equivalenza 26 novembre 2003 Marina Cazzola (marina@matapp.unimib.it) Dipartimento di Matematica e Applicazioni Università di Milano Bicocca

Dettagli

Principali informazioni. NO, ma la frequenza è fortemente consigliata Lingua di erogazione

Principali informazioni. NO, ma la frequenza è fortemente consigliata Lingua di erogazione Principali informazioni A.A. 2017-2018 sull insegnamento Titolo insegnamento Matematica Discreta (Corso B) Corso di studio Informatica e Tecnologie per la Produzione del Software Crediti formativi 7+2=9

Dettagli

Prova scritta di Matematica Discreta del 15/2/2005

Prova scritta di Matematica Discreta del 15/2/2005 Prova scritta di Matematica Discreta del 15/2/2005 1. a. Quante parole di 6 lettere si possono formare con un alfabeto contenente 25 lettere? b. Quante se sono proibite le doppie (ossia lettere uguali

Dettagli

1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 7 novembre 2018

1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 7 novembre 2018 1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 7 novembre 2018 Cognome e Nome: Matricola: L iniziale del mio cognome è compresa tra A e L. 1. Dire quali dei seguenti sottoinsiemi H G

Dettagli

Matematica Discreta Classe 1 Dott. C. Delizia 14 Giugno 2007

Matematica Discreta Classe 1 Dott. C. Delizia 14 Giugno 2007 Matematica Discreta Classe 1 Dott. C. Delizia 14 Giugno 2007 Cognome Nome Matricola Esercizio 1. Per ogni n Z sia nz = {na : a Z}. Sia inoltre A = {a Z : 0 a 9}. Elencandone gli elementi, si descrivano

Dettagli

$marina/did/mdis03/ $marina/did/md $marina/did/mdis03/

$marina/did/mdis03/   $marina/did/md   $marina/did/mdis03/ 1 2 vvertenze Matematica Discreta (elementi E-O CdL Informatica 26 novembre 2003 Queste fotocopie sono distribuite solo come indicazione degli argomenti svolti a lezione e NON sostituiscono in alcun modo

Dettagli

6. Calcolare i minori principali di a al variare di a in C.

6. Calcolare i minori principali di a al variare di a in C. 1. Sia V = R 4. (a) Dimostrare che f(v) = 2v, definisce un endomorfismo di V. (b) Ha senso parlare della matrice associata ad f? In tal caso determinarla. 2. Sia A una matrice 3 3 a coefficienti in Z 7,

Dettagli

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE AL110 - Algebra 1 - A.A. 2014/2015 Appello A (Gennaio 2015) Matricola (O ALTRO IDENTIFICATIVO) Cognome:...................................... Nome:...................................... esercizio 1.1a

Dettagli

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE AL110 - Algebra 1 - A.A. 2011/2012 Valutazione in itinere - II Prova Cognome:...................................... Nome:...................................... Matricola (O ALTRO IDENTIFICATIVO) UTILIZZARE

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 27 Settembre 2012

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 27 Settembre 2012 Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 27 Settembre 2012 Dipartimento di Matematica Università di Roma Tre U. Bessi, A. Bruno, S. Gabelli, G. Gentile Istruzioni (a) La sufficienza

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1

Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Prof. Lidia Angeleri Anno accademico 2015-2016 1 1 appunti aggiornati in data 14 gennaio 2016 Indice I Gruppi 3

Dettagli

MATEMATICA DISCRETA E LOGICA MATEMATICA

MATEMATICA DISCRETA E LOGICA MATEMATICA Cognome Nome Matricola MATEMATICA DISCRETA E LOGICA MATEMATICA Docenti: C. Delizia, M. Tota Quinto Appello 18 settembre 2012 IMPORTANTE: indicare l esame che si intende sostenere e svolgere solo gli esercizi

Dettagli

Matematica Discreta Classe 1 Dott. C. Delizia 12 Settembre 2007

Matematica Discreta Classe 1 Dott. C. Delizia 12 Settembre 2007 Matematica Discreta Classe 1 Dott. C. Delizia 12 Settembre 2007 Cognome Nome Matricola Esercizio 1. Si dica se ciascuna delle seguenti affermazioni è vera oppure falsa, motivando la risposta: 2 3Z 2 4Z

Dettagli

ESERCIZI PROPOSTI. Capitolo 5 MCD(15,5) = 15 5 =3. un unico sottogruppo di ordine d, cioè x 20/d = C d. , x 20/10 = x 2 = C 10. , x 20/4 = x 5 = C 4

ESERCIZI PROPOSTI. Capitolo 5 MCD(15,5) = 15 5 =3. un unico sottogruppo di ordine d, cioè x 20/d = C d. , x 20/10 = x 2 = C 10. , x 20/4 = x 5 = C 4 ESERCIZI PROPOSTI Capitolo 5 511 Determinare il periodo dell elemento x 320 del gruppo ciclico C 15 = x x 15 =1 Indicare tutti i generatori del sottogruppo x 320 Soluzione Dividiamo 320 per 15 Si ha 320

Dettagli

Matematica Discreta Classe 1 Dott. C. Delizia 31 Gennaio 2008

Matematica Discreta Classe 1 Dott. C. Delizia 31 Gennaio 2008 Matematica Discreta Classe 1 Dott. C. Delizia 31 Gennaio 2008 Cognome Matricola Nome Esercizio 1. Per ogni n Z sia nz = {na : a Z}. Sia inoltre A = {a Z : 6 a 6}. Elencandone gli elementi, si descrivano

Dettagli

Algebra e Logica Matematica. Gruppi, classi di resto. Ingegneria Informatica Foglio 2. Esercizio 2.1. Calcolare il MCD e il mcm delle coppie seguenti:

Algebra e Logica Matematica. Gruppi, classi di resto. Ingegneria Informatica Foglio 2. Esercizio 2.1. Calcolare il MCD e il mcm delle coppie seguenti: Università di Bergamo Anno accademico 20162017 Ingegneria Informatica Foglio 2 Algebra e Logica Matematica Gruppi, classi di resto Esercizio 2.1. Calcolare il MCD e il mcm delle coppie seguenti: 1) (12,

Dettagli

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0 Dipartimento di Matematica e Informatica Anno Accademico 206-207 Corso di Laurea in Informatica (L-3) Prova scritta di Matematica Discreta (2 CFU) 6 Settembre 207 Parte A [0 punti] Sia data la successione

Dettagli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: gruppi

Elementi di Algebra e di Matematica Discreta Strutture algebriche: gruppi Elementi di Algebra e di Matematica Discreta Strutture algebriche: gruppi Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra e di Matematica Discreta 1 / 34 index

Dettagli

$marina/did/md $marina/did/mdis03/ $marina/did/mdis03/

$marina/did/md   $marina/did/mdis03/   $marina/did/mdis03/ 1 2 Avvertenze Matematica Discreta (elementi) E-O CdL Informatica 3 dicembre 2003 Queste fotocopie sono distribuite solo come indicazione degli argomenti svolti a lezione e NON sostituiscono in alcun modo

Dettagli

$marina/did/md

$marina/did/md Matematica Discreta (elementi) E-O CdL Informatica Strutture algebriche 3 dicembre 2003 Marina Cazzola (marina@matapp.unimib.it) Dipartimento di Matematica e Applicazioni Università di Milano Bicocca Matematica

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione C

II Esonero di Matematica Discreta - a.a. 06/07. Versione C II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione C a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5612 e la scrittura

Dettagli

Fondamenti di Matematica del discreto

Fondamenti di Matematica del discreto Fondamenti di Matematica del discreto M1 - Insiemi numerici 12 gennaio 2013 - Laurea on line Esercizio 1. Dire, motivando la risposta, quali delle seguenti equazione diofantee ammettono soluzioni e risolvere

Dettagli

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione B

II Esonero di Matematica Discreta - a.a. 06/07. Versione B II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

Matematica Discreta e Algebra Lineare (per Informatica)

Matematica Discreta e Algebra Lineare (per Informatica) Matematica Discreta e Algebra Lineare (per Informatica) Docente: Alessandro Berarducci Anno accademico 2016-2017, versione 14 Marzo 2017 Tipiche domande d esame La seguente lista di domande non intende

Dettagli

Esercizi relativi al capitolo 7

Esercizi relativi al capitolo 7 Esercizi relativi al capitolo 7 7.1 Vettori di R n Determinare i vettori ottenuti mediante le seguenti combinazioni lineari: 1. v = 2v 1 v 2 +v 3 +3v 4 con v 1 = (1, 1, 2), v 2 = ( 1, 2, 0), v 3 = (3,

Dettagli

Corso Matematica Discreta Anno accademico Lista domande per l orale breve.

Corso Matematica Discreta Anno accademico Lista domande per l orale breve. Corso Matematica Discreta Anno accademico 2015-2016 Lista domande per l orale breve. 1. Dimostrare una delle leggi che coinvolgono l intersezione, l unione, il complementare di insiemi contenute nel Teorema

Dettagli

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE AL110 - Algebra 1 - A.A. 2014/2015 Appello B (Febbraio 2015) Matricola (O ALTRO IDENTIFICATIVO) Cognome:...................................... Nome:...................................... esercizio 1.1

Dettagli

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE AL110 - Algebra 1 - A.A. 2011/2012 Valutazione in itinere - I Prova Cognome:...................................... Nome:...................................... Matricola (O ALTRO IDENTIFICATIVO) UTILIZZARE

Dettagli

DIARIO DEL CORSO DI TEORIA DEI GRUPPI. Prima settimana. Lezione di mercoledí 27 febbraio 2013 (un ora)

DIARIO DEL CORSO DI TEORIA DEI GRUPPI. Prima settimana. Lezione di mercoledí 27 febbraio 2013 (un ora) DIARIO DEL CORSO DI TEORIA DEI GRUPPI SANDRO MATTAREI A.A. 2012/13 Prima settimana. Lezione di mercoledí 20 febbraio 2013 (un ora) Monoidi. Gli elementi invertibili di un monoide formano un gruppo. Esempi:

Dettagli

Università degli studi di Verona Corso di laurea in Informatica Prova scritta di Algebra 3 settembre 2002

Università degli studi di Verona Corso di laurea in Informatica Prova scritta di Algebra 3 settembre 2002 Prova scritta di Algebra settembre 2002 1) Si consideri il sottoinsieme del gruppo Q \{0} dei numeri razionali non nulli rispetto alla moltiplicazione: { m X = n } m 0, n Si dimostri che X è un sottosemigruppo;

Dettagli

Studieremo le congruenze lineari, cioe le equazioni del tipo

Studieremo le congruenze lineari, cioe le equazioni del tipo Congruenze lineari 1. Oggetto di studio - Definizione 1. Studieremo le congruenze lineari, cioe le equazioni del tipo dove ax b (mod n) (1) n, il modulo della congruenza, e un intero positivo fissato x,

Dettagli

Insiemi con una operazione

Insiemi con una operazione CAPITOLO 3 Insiemi con una operazione Lo studio dell algebra è cominciato con la manipolazione di espressioni dapprima numeriche e via via sempre più simboliche; si pensa infatti che la stessa parola algebra

Dettagli

Aritmetica

Aritmetica Aritmetica 2017-2018 Esercizi 1 02.10.2017 1.1 Induzione Sia r un numero reale tale che r + 1/r è un intero. Allora per ogni intero n 1 si ha che r n + 1/r n è intero. Dimostrare che i numeri di Fibonacci

Dettagli

Geometria e algebra lineare Prova intermedia 30/11/2014 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica

Geometria e algebra lineare Prova intermedia 30/11/2014 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica A A 1) Sia r la retta di equazioni x y =, y z = 1, e sia s la retta passante per i punti (2,, 1) e (,, ). Siano inoltre π il piano perpendicolare a r passante per ( 1,, ) e P il punto di intersezione di

Dettagli

Aritmetica 2009/10 Compitino 3/11/ x 16 mod 23 3x 2 mod 5

Aritmetica 2009/10 Compitino 3/11/ x 16 mod 23 3x 2 mod 5 Aritmetica 2009/10 Compitino 3/11/2009 1. Trovare le soluzioni intere del sistema 4 x 16 mod 23 3x 2 mod 5 Esempio risoluzione: Cerchiamo di riportarci ad un sistema di congruenze lineari. Calcoliamo l

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

Qualche informazione su gruppi e anelli

Qualche informazione su gruppi e anelli Qualche informazione su gruppi e anelli 1. Gruppi e sottogruppi: prime proprietà Cominciamo subito scrivendo la definizione formale di gruppo. Definizione 0.1. Un gruppo G è un insieme non vuoto dotato

Dettagli

Prova scritta di Algebra 4 Luglio Si risolva il seguente sistema di congruenze lineari x 2 mod 3 2x 1 mod 5 x 3 mod 2

Prova scritta di Algebra 4 Luglio Si risolva il seguente sistema di congruenze lineari x 2 mod 3 2x 1 mod 5 x 3 mod 2 Prova scritta di Algebra 4 Luglio 013 1. Si risolva il seguente sistema di congruenze lineari x mod 3 x 1 mod 5 x 3 mod. In S 9 sia α (1, 3(3, 5, 6(5, 3(4,, 7(, 1, 4, 7(8, 9 a Si scriva α come prodotto

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 26 febbraio 2007 Traccia I COG 1 In R 3 sono assegnati i vettori: u 1 = (2, h, 0), u 2 = (1, 0, h), u 3 = (h, 1, 2). Stabilire se esistono valori reali del parametro h per cui S = {u 1, u 2,

Dettagli

Facoltà di Scienze MFN- Corso di laurea in Matematica ALGEBRA 2 - G.M. Piacentini Cattaneo- I. Damiani - ESERCIZI DI RIPASSO SUI GRUPPI

Facoltà di Scienze MFN- Corso di laurea in Matematica ALGEBRA 2 - G.M. Piacentini Cattaneo- I. Damiani - ESERCIZI DI RIPASSO SUI GRUPPI Facoltà di Scienze MFN- Corso di laurea in Matematica ALGEBRA 2 - G.M. Piacentini Cattaneo- I. Damiani - ESERCIZI DI RIPASSO SUI GRUPPI SOLUZIONI (1) Siano G e G gruppi, e G = 47, G = 40. Può esistere

Dettagli

Interi e Congruenze. Giovanna Carnovale. November 3, 2011

Interi e Congruenze. Giovanna Carnovale. November 3, 2011 Interi e Congruenze Giovanna Carnovale November 3, 2011 1 I numeri interi Nell insieme dei naturali non possiamo sempre calcolare la differenza di due numeri. Infatti b a N se e solo se b a. In termini

Dettagli

0 Insiemi, funzioni, numeri

0 Insiemi, funzioni, numeri Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo

Dettagli

Prova scritta di Matematica Discreta e Logica del giorno 3 luglio 2017 Soluzione degli esercizi FILA D

Prova scritta di Matematica Discreta e Logica del giorno 3 luglio 2017 Soluzione degli esercizi FILA D ˆ ˆ ƒˆ ˆ ƒ ˆ ˆ Œ ˆ.. 2016-2017 Prova scritta di Matematica Discreta e Logica del giorno 3 luglio 2017 Soluzione degli esercizi FILA D Esercizio 1 Nell insieme delle coppie ordinate di numeri naturali,

Dettagli

Capitolo 4: Teoria degli anelli:

Capitolo 4: Teoria degli anelli: Capitolo 4: Teoria degli anelli: Definizione (Anello): È un insieme munito di due operazioni che indicheremo con in modo che: 1- è un gruppo abeliano rispetto a 2- è un monoide associativo rispetto al

Dettagli

ALGEBRA C. MALVENUTO

ALGEBRA C. MALVENUTO ALGEBRA CANALE A-L ESAME SECONDA PARTE SECONDO ESONERO 27 GENNAIO 22 C. MALVENUTO Istruzioni. Completare subito la parte inferiore di questa pagina con il proprio nome, cognome e firma. Scrivere solamente

Dettagli

Nome. Esercizio 2. Risolvere il seguente sistema di congruenze lineari:

Nome. Esercizio 2. Risolvere il seguente sistema di congruenze lineari: Università degli Studi Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2006/2007 AL1 - Algebra 1, fondamenti Seconda prova di valutazione intermedia 11 Gennaio 2006 Cognome Nome Numero di matricola

Dettagli

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE AL110 - Algebra 1 - A.A. 2014/2015 Valutazione in itinere - I Prova (Novembre 2014) Matricola (O ALTRO IDENTIFICATIVO) Cognome:...................................... Nome:......................................

Dettagli

COMPITO DI ALGEBRA 29 maggio ax 1 (mod 81) a x 1 (mod 81) a b a, b, c, 0 F 0 c

COMPITO DI ALGEBRA 29 maggio ax 1 (mod 81) a x 1 (mod 81) a b a, b, c, 0 F 0 c 29 maggio 1995 1) Determinare per quali valori del parametro a il sistema è risolubile. ax 1 (mod 81) a x 1 (mod 81) 2) Sia G il gruppo moltiplicativo G = ( ) a b a, b, c, 0 F 0 c 5, ac 0} (i) Determinare

Dettagli

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9 Prova scritta di Algebra 9 settembre 2016 1. Si risolva il seguente sistema di congruenze lineari x 5 mod 7 11x 1 mod 13 x 3 mod 9 Si determini la sua minima soluzione positiva. 2. In S 9 sia α = (4, 9)(9,

Dettagli

Capitolo 3. Determinante e rango Permutazioni

Capitolo 3. Determinante e rango Permutazioni Capitolo 3 Determinante e rango 303 Permutazioni Ricordiamo innanzitutto che, dato un insieme, l insieme S () delle applicazioni biunivoche da in sè stesso, può essere munito di una operazione, indicata

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 5 Luglio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 5 Luglio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 5 Luglio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5 /5

Dettagli

CONGRUENZE. 2 La formula risulta vera anche per n+1. Per induzione è allora vera per ogni n.

CONGRUENZE. 2 La formula risulta vera anche per n+1. Per induzione è allora vera per ogni n. CONGRUENZE 1. Cosa afferma il principio di induzione? Sia P(n) una proposizione definita per ogni n n 0 (n 0 =naturale) e siano dimostrate le seguenti proposizioni: a) P(n 0 ) è vera b) Se P(n) è vera

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 9 febbraio 2007 Traccia I 1 In R 3 si consideri il sottoinsieme H = {(a, b, 2a + b) a, b R}. Stabilire se H è un sottospazio vettoriale di R 3 e, in caso affermativo, determinarne la dimensione

Dettagli

AL110 Algebra 1 A.A. 2012/2013

AL110 Algebra 1 A.A. 2012/2013 AL110, I Semestre, Crediti 10 AL110 Algebra 1 A.A. 2012/2013 Prof. Florida Girolami 1. Insiemi e applicazioni Nozione intuitiva di insieme. Operazioni tra insiemi (unione, intersezione, differenza, complementare)

Dettagli

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014 MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 4 APRILE 014 1. Trovare il numero di stringhe di lunghezza n che si possono formare usando le lettere A, B, C, D, E in modo che ogni stringa

Dettagli

CORSO DI LAUREA IN INFORMATICA CALCOLO NUMERICO Secondo esonero - 07 Giugno x y =2.

CORSO DI LAUREA IN INFORMATICA CALCOLO NUMERICO Secondo esonero - 07 Giugno x y =2. ORSO DI LAUREA IN INFORMATIA ALOLO NUMERIO Secondo esonero - 7 Giugno - Traccia. [Punti:.a: ;.b: ;.c:] Sia dato il sistema x + y + z =, x y =. (.a) Determinarne l insieme delle soluzioni. (.b) Indicare

Dettagli

GE460 - Teoria dei grafi. Soluzioni esame del 28 Gennaio 2013

GE460 - Teoria dei grafi. Soluzioni esame del 28 Gennaio 2013 GE460 - Teoria dei grafi Soluzioni esame del 28 Gennaio 2013 Problema 1. (1.a) Sia G un grafo connesso p-regolare e G G un suo sottografo. Vero o falso: Se G è p-regolare allora G = G. Soluzione Vero.

Dettagli

MATEMATICA DISCRETA E LOGICA MATEMATICA

MATEMATICA DISCRETA E LOGICA MATEMATICA Cognome Nome Matricola MATEMATICA DISCRETA E LOGICA MATEMATICA Docenti: C. Delizia, M. Tota Terzo Appello 11 febbraio 2010 IMPORTANTE: indicare l esame che si intende sostenere e svolgere solo gli esercizi

Dettagli

Esercizi complementari

Esercizi complementari Esercizi complementari (tratti dagli esercizi del prof. Alberto Del Fra) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17 x, y

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

Indice. Aritmetica modulare. Mauro Saita. Versione provvisoria. Febbraio

Indice. Aritmetica modulare. Mauro Saita.   Versione provvisoria. Febbraio modulare e-mail: maurosaita@tiscalinetit Versione provvisoria Febbraio 2018 1 Indice 1 modulare Classe di resti 2 11 Le proprietà delle congruenze 4 12 Le operazioni in Z n : l addizione e la moltiplicazione

Dettagli