CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8
|
|
|
- Donato Moretti
- 10 anni fa
- Visualizzazioni
Transcript
1 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato introdotto un nuovo macchinario per la produzione di bulloni. Il diametro dei bulloni prodotti dalla nuova macchina segue una distribuzione normale con media µ e varianza entrambe incognite. Per valutare la qualità della produzione ottenuta attraverso il nuovo macchinario si misura il diametro di un campione di 4 bulloni prodotti, ottenendo i risultati seguenti 1.8, 2.4, Verificare al livello α = 0.01 il sistema di ipotesi seguente: : =1.5 : >1.5 Sol =0.01 Dato che la media della popolazione dei diametri dei bulloni prodotti dalla macchina è non nota, la statistica test da utilizzare per verificare il sistema di ipotesi sulla varianza è: = ( 1) Il livello di significatività è =0.01, il test è a una coda, quindi., =11.341, Regola di decisione (regione di rifiuto): Se allora rifiutiamo l ipotesi nulla Sapendo che =... =2.5 e che =... =0.093 = 3(0.093) 1.5 Poichè = allora si accetta l ipotesi nulla. =0.187
2 Esercizio 2. Test dell indipendenza tra mutabili Alcuni ricercatori sono interessati a valutare se esiste un associazione tra l area di residenza delle famiglie (urbana o rurale) e la presenza di figli minorenni (si o no). A tale proposito viene selezionato un campione casuale di 500 famiglie su cui sono state raccolte le seguenti informazioni: Presenza di figli minorenni Area di residenza Urbana Rurale SI NO Verificare l ipotesi di indipendenza tra i due caratteri in tabella un livello di significatività α = Al fine di stabilire se esiste o meno associazione tra i caratteri oggetto di studio dobbiamo utilizzare un test statistico basato sul chi-quadro χ. Il sistema di ipotesi da sottoporre a verifica è il seguente: : non esiste associazione tra la presenza di figli minorenni e l area di residenza della famiglia : esiste associazione tra la presenza di figli minorenni e l area di residenza delle famiglie b) Definizione della statistica test sotto l ipotesi nulla: dove =.. =1,..h =1,.. = ( ) ~ ;()() Regola di decisione (regione di rifiuto) Con il livello di significatività α = 0.01 e con i= 2 and j = 2 otteniamo χ = 2 1; χ = Quindi, se C> studio. 1; si rifiuta l ipotesi nulla e si conclude che esiste associazione tra i caratteri oggetto di
3 Tabella teorica sotto l ipotesi di indipendenza Area di residenza Urbana Rurale Presenza SI di figli minorenni NO Per comodità si riportano nella seguente tabella i valori: ( O ) 2 ij Eij E ij Area di residenza Urbana Rurale Presenza SI di figli minorenni NO il valore della statistica test è dunque C= Decisione: C= < 6.63 non si può rifiutare l ipotesi nulla; non c è evidenza di un legame associativo tra la presenza di figli minorenni e l area di residenza della famiglia.
4 Esercizio 3. Modello di regressione, bontà di adattamento, test sulla significatività dei coefficienti Le seguenti variabili sono state registrate a partire da un campione casuale di 5 impiegati: X= tempo di permanenza in ufficio in una settimana lavorativa (in ore) Y=spesa per cancelleria (in euro) Totale ) Valutare, a partire da un modello di regressione lineare se la spesa sostenuta per la cancelleria Y dipende dal tempo di permanenza in ufficio degli impiegati, X. Stimare i parametri della retta di regressione e calcolare il coefficiente di determinazione del modello (bontà di adattamento) 2) Costruire un intervallo di confidenza al 95% per il coefficiente angolare della retta di regressione 3), misura l effetto che una variazione unitaria della variabile esplicativa X produce sulla variabile dipendente Y. Sottoporre a verifica delle ipotesi la significatività del coefficiente stimato con il modello di regressione 4) Costruire un test con un livello di significatività del 5% per Sol. Tabella dei calcoli ( )( ) ( ) ( ) totale
5 Dati: =33.3 =47.6 = = =3.89 =3.38 ( ) =10.44 Il modello di regressione lineare: = + + Stima della retta di regressione: = + + I parametri della retta di regressione Coefficiente angolare: inclinazione della retta di regressione, come varia in media Y a fronte di un incremento unitario della X = (,) () = ( )( ) ( ) = = Nota: è possibile, in alternativa, esprimere il coefficiente angolare della retta di regressione con la seguente: = ( ) Intercetta della retta di regressione: indica il valore atteso della variabile di risposta Y quando il predittore X assume valore 0. = =47.6 (0.3716) 33.3= La retta di regressione stimata è pertanto: Coefficiente di correlazione:, = (,) = 28.1/ = =0.43 = L obiettivo di un modello di regressione semplice lineare è quello di spiegare come varia la variabile di risposta Y in funzione di una variabile esplicativa X. Il criterio per individuare la retta che meglio descrive la dipendenza funzionale tra le due variabili utilizza questa scomposizione della varianza:
6 ( ) = ( ) +( ) Tra le infinite rette che passano per il punto di coordinate (,) la retta di regressione è quella che rende minima la devianza residua e, nello stesso tempo, rende massima la devianza di regressione, ovvero: ( ) Di conseguenza, tanto maggiore è la variabilità della Y spiegata da X tanto più soddisfacente sarà il modello stimato. Il coefficiente di determinazione (r-quadro) è una misura della bontà di adattamento del modello ai dati, infatti consente di individuare quanta parte della variabilità complessiva di Y è spiegata dalla regressione (vedi esercitazione n.6, prima parte). In particolare: Dove: =( ) = =( ) =10.44 =( ) =46.54 = = ( ) ( ) = = ( ) ( ) = =0.183 E utile inoltre ricordare che si può esprimere il valore del coefficiente di determinazione sfruttando la devianza degli errori: =1 Nella regressione lineare il coefficiente di determinazione può essere ottenuto anche a partire dal coefficiente di correlazione. In particolare, vale la seguente: = =0.43 =0.183.
7 Nota: in caso di regressione lineare semplice, il coefficiente di correlazione di Pearson può essere espresso come:, = = =0.43 Dunque, conoscendo deviazione standard e coefficiente di regressione possiamo calcolare il coefficiente di Pearson; e viceversa. b) Per costruire l intervallo di confidenza al 95% su, abbiamo bisogno di studiare la distribuzione campionaria dello stimatore. Siccome una delle ipotesi classiche del modello di regressione è la normalità degli errori, allora si dimostra che: Per dimostrare questo risultato osserviamo che: ~, ( ) rappresenta una combinazione lineare delle, infatti con opportuni passaggi algebrici esso si può esprimere come: dove, ovviamente ~, i.i.d. = ( ) Tuttavia ciò sarebbe vero (e quindi lo stimatore si distribuirebbe secondo una legge normale) se conoscessimo la varianza degli errori del modello. Nella realtà, gli errori del modello non sono osservabili, mentre è possibile osservare i residui. A partire da questo, occorre dunque stimare un ulteriore parametro che rappresenta uno stimatore non distorto della varianza dei residui del modello. = 2 da cui, lo stimatore varianza di Distribuzione dello stimatore per : = ( ) ~ ;
8 Intervallo casuale per : Calcoli: ; ( ) Sapendo che = ( ) =46.54 allora + ; = 2 =46.54 = ( ) =1 A partire da questo risultato si ricava la stima corretta della varianza del coefficiente di regressione da cui: = ( ) = = ( ) = = ;=.;=3.182 IC per : 1.069;1.817 c) Un'ipotesi molto importante da verificare nel modello di regressione lineare semplice è che il coefficiente angolare della retta di regressione sia pari a 0: in tal caso, allora la variabile di risposta non dipende dal predittore, in altre parole non c'e regressione sul predittore. Sistema di ipotesi: : =0 : 0 Livello di significatività =0.05 Statistica test (sotto ): = ~ ; Regola di decisione Se > ;=3.182 si rifiuta l ipotesi nulla Valore della statistica test
9 = =0.82 Decisione: T=0.82<3.182, non si rifiuta l ipotesi nulla; il coefficiente stimato non è statisticamente significativo non esiste un legame di dipendenza lineare tra Y e X d) Test sull indice di bontà di adattamento del modello ai dati. Sistema di ipotesi : =0 : >0 Livello di significatività =0.05 Statistica test (sotto ): = () ~ (;) Regola di decisione: (;) =.(;) =10.1 Se >.(;) =10.1 allora rifiuto l ipotesi nulla. Valore test: =.(). =0.67 Siccome F=0.67<10.1 non si rifiuta l ipotesi nulla.
Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008
Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi
Istituzioni di Statistica e Statistica Economica
Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte
Capitolo 12 La regressione lineare semplice
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara
Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test
STATISTICA (2) ESERCITAZIONE 6 05.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test Il preside della scuola elementare XYZ sospetta che
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180
Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni)
STATISTICA (2) ESERCITAZIONE 4 18.02.2013 Dott.ssa Antonella Costanzo Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) Sia X una popolazione distribuita secondo la legge Bernoulliana
Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)
Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso
E naturale chiedersi alcune cose sulla media campionaria x n
Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile
1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.
Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi
Statistica. Esercitazione 15. Alfonso Iodice D Enza [email protected]. Università degli studi di Cassino. Statistica. A. Iodice
Esercitazione 15 Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Test delle ipotesi per la media (varianza nota), p-value del test Il manager di un fast-food
Inferenza statistica. Statistica medica 1
Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella
Relazioni statistiche: regressione e correlazione
Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica
Esercitazione n.4 Inferenza su varianza
Esercizio 1 Un industria che produce lamiere metalliche ha ricevuto un ordine di acquisto di un grosso quantitativo di lamiere di un dato spessore. Per assicurare la qualità della propria fornitura, l
Corso di Psicometria Progredito
Corso di Psicometria Progredito 4.2 I principali test statistici per la verifica di ipotesi: Il test F Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico
Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)
Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città
Elementi di Psicometria
Elementi di Psicometria E2-Riepilogo finale vers. 1.2 Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2010-2011 G. Rossi (Dip. Psicologia) ElemPsico 2010-2011
STATISTICA IX lezione
Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo [email protected] A.Studio dell interdipendenza tra variabili: riepilogo Concetto relativo allo studio delle relazioni tra
STATISTICA INFERENZIALE
STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p
3. Confronto tra medie di due campioni indipendenti o appaiati
BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health [email protected] MARTA BLANGIARDO
Esercizi test ipotesi. Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010
Esercizi test ipotesi Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Verifica delle ipotesi - Esempio quelli di Striscia la Notizia" effettuano controlli casuali per vedere se le pompe
Esercitazione n.2 Inferenza su medie
Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione
Temi di Esame a.a. 2012-2013. Statistica - CLEF
Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei
Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una
Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali [email protected]
Dip. di Scienze Umane e Sociali [email protected] Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri
LEZIONE n. 5 (a cura di Antonio Di Marco)
LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,
Test statistici di verifica di ipotesi
Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall
Statistica. Lezione 6
Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante
Statistiche campionarie
Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle
FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011
FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/3/2 ESERCIZIO (2+2+2+2) La seguente tabella riporta la distribuzione della variabile "Stato Civile"
Analisi di dati di frequenza
Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato
Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C
Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato
1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:
Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi
Metodi statistici per le ricerche di mercato
Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per
Relazioni tra variabili
Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea in Medicina e Chirurgia - A.A. 009-10 Scuole di specializzazione in: Medicina Legale, Medicina del Lavoro, Igiene e Medicina
FONDAMENTI DI PSICOMETRIA - 8 CFU
Ψ FONDAMENTI DI PSICOMETRIA - 8 CFU STIMA DELL ATTENDIBILITA STIMA DELL ATTENDIBILITA DEFINIZIONE DI ATTENDIBILITA (affidabilità, fedeltà) Grado di accordo tra diversi tentativi di misurare uno stesso
STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua
STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo febbraio 2015 Modelli continui di probabilità: la v.c. uniforme continua Esercizio 1 Anna ha una gift card da 50 euro. Non si sa se sia mai stata utilizzata
Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)
Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad
Inferenza statistica I Alcuni esercizi. Stefano Tonellato
Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,
TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST
TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 La formula µ = x ± s n
Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia
Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 8 Marzo 007 Facoltà di Astronomia ESERCIZIO 1 La seguente tabella riporta la distribuzione congiunta della situazione lavorativa e dello
Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica
Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi
INDICE PREFAZIONE VII
INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione
T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente:
T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: t = X i X j s 2 i (n i 1) + s 2 j (n j 1) n i + n j - 2 1
Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.
Il test del Chi-quadrato
Il test del Chi-quadrato Prof.ssa Montomoli- Univ. di Pavia Prof.ssa Zanolin Univ. di Verona Il rischio di contrarre epatite C è associato all avere un tatuaggio? Cosa vuol dire ASSOCIAZIONE tra due variabili?
4. Confronto tra medie di tre o più campioni indipendenti
BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health [email protected] MARTA BLANGIARDO
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Distribuzione di probabilità, funzione di ripartizione di una v.c. discreta Il tasso di cambio
IL TEST CHI QUADRATO χ 2
IL TEST CHI QUADRATO χ 2 Test parametrici I test studiati nelle lezioni precedenti (test-t, testz) consentono la verifica di ipotesi relative al valore di specifici parametri di popolazione Esempio: differenza
Lineamenti di econometria 2
Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione
STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007
Esercitazione I 7/4/007 In una scatola contenente 0 pezzi di un articolo elettronico risultano essere difettosi. Si estraggono a caso due pezzi, uno alla volta senza reimmissione. Quale è la probabilità
Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi
In molte situazioni una raccolta di dati (=esiti di esperimenti aleatori) viene fatta per prendere delle decisioni sulla base di quei dati. Ad esempio sperimentazioni su un nuovo farmaco per decidere se
Elaborazione dei dati su PC Regressione Multipla
21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione
Corso di Psicometria Progredito
Corso di Psicometria Progredito 3.1 Introduzione all inferenza statistica Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014
Servizi di consulenza specialistica per IGRUE 2009 2012
Allegato 9A Metodo della stima delle differenze Descrizione della procedura Il metodo della stima delle differenze è indicato qualora il controllore ritenga che la popolazione sia affetta da un tasso di
Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate
Introduzione alle relazioni multivariate Associazione e causalità Associazione e causalità Nell analisi dei dati notevole importanza è rivestita dalle relazioni causali tra variabili Date due variabili
Concetto di potenza statistica
Calcolo della numerosità campionaria Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Concetto di potenza statistica 1 Accetto H 0 Rifiuto H 0 Ipotesi Nulla (H
1. Distribuzioni campionarie
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 28/05/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gico del
ELEMENTI DI STATISTICA
Dipartimento di Ingegneria Meccanica Chimica e dei Materiali PROGETTAZIONE E GESTIONE DEGLI IMPIANTI INDUSTRIALI Esercitazione 6 ORE ELEMENTI DI STATISTICA Prof. Ing. Maria Teresa Pilloni Anno Accademico
Corso di Statistica. Corso di Laurea in Ingegneria Edile. Ingegneria Tessile. Docente: Orietta Nicolis
Corso di Statistica Corso di Laurea in Ingegneria Edile ed Ingegneria Tessile Docente: Orietta Nicolis Orario del corso: Martedì: dalle 16.00 alle 18.00 Giovedì: dalle 9.30 alle 11.30 Ricevimento: Mercoledì:
Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte
Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico
RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della
RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili
ESAME DI STATISTICA Nome: Cognome: Matricola:
ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli
Il metodo della regressione
Il metodo della regressione Consideriamo il coefficiente beta di una semplice regressione lineare, cosa significa? È una differenza tra valori attesi Anche nel caso classico di variabile esplicativa continua
Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).
Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si consegnano
Il rischio di un portafoglio
Come si combinano in un portafoglio i rischi di 2 titoli? dipende dai pesi e dal valore delle covarianze covarianza a a ρ a b ρ a b ρ b b ρ coefficiente di correlazione = cov / ² p = a² ² + b² ² + 2 a
6. Modelli statistici: analisi della regressione lineare
BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health [email protected] MARTA BLANGIARDO
Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che
Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x
Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V
Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows.
SPC e distribuzione normale con Access
SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,
Il confronto fra proporzioni
L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,
Verifica di ipotesi e intervalli di confidenza nella regressione multipla
Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo
Lezione n. 2 (a cura di Chiara Rossi)
Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,
Corso di Psicometria Progredito
Corso di Psicometria Progredito Soluzioni della simulazione del 17/05/2011 Gianmarco Altoè Dipartimento di Psicologia Università di Cagliari, Anno Accademico 2010-2011 Leggere BENE le avvertenze prima
RISCHIO E CAPITAL BUDGETING
RISCHIO E CAPITAL BUDGETING Costo opportunità del capitale Molte aziende, una volta stimato il loro costo opportunità del capitale, lo utilizzano per scontare i flussi di cassa attesi dei nuovi progetti
Esercizi di riepilogo Statistica III canale, anno 2008
Esercizio 1 - Esercizio 5 esame 22 giugno 2004 Esercizi di riepilogo Statistica III canale, anno 2008 Data la seguente distribuzione di 100 dipendenti di un azienda in base al tempo impiegato (in minuti)
Limited Dependent Variable Models
Limited Dependent Variable Models Logit Tobit Probit Modelli Logit e Probit Latent variable models for binary choice Models for descrete dependent variable Traducendo Spesso vogliamo studiare (le determinanti
è decidere sulla verità o falsità
I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall
Metodologia epidemiologica
Metodologia epidemiologica Verifica di ipotesi Quale test utilizzare? Statistica medica Alla fine di questa lezione dovreste essere in grado di: riconoscere i principali test utilizzati nel confronto di
[email protected] http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi
[email protected] http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso
Lineamenti di econometria 2
Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Regressione con Variabili Dummy Regressione con Variabili Dummy La
Capitolo 2 Distribuzioni di frequenza
Edizioni Simone - Vol. 43/1 Compendio di statistica Capitolo 2 Distribuzioni di frequenza Sommario 1. Distribuzioni semplici. - 2. Distribuzioni doppie. - 3. Distribuzioni parziali: condizionate e marginali.
Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1
Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo
1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE
1 Associazione tra variabili quantitative ASSOCIAZIONE FRA CARATTERI QUANTITATIVI: COVARIANZA E CORRELAZIONE 2 Associazione tra variabili quantitative Un esempio Prezzo medio per Nr. Albergo cliente (Euro)
Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011
Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini [email protected] Rev. 10/01/011 La distribuzione F di Fisher - Snedecor
Statistical Process Control
Statistical Process Control ESERCIZI Esercizio 1. Per la caratteristica di un processo distribuita gaussianamente sono note media e deviazione standard: µ = 100, σ = 0.2. 1a. Calcolare la linea centrale
2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale
BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health [email protected]
Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice
cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze
VERIFICA DELLE IPOTESI
VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi
METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica
METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica EPIDEMIOLOGIA Ha come oggetto lo studio della distribuzione delle malattie in un popolazione e dei fattori che la influenzano
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca
LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010
LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno
Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI
Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni
Dott.ssa Caterina Gurrieri
Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo
Lineamenti di econometria 2
Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) La Regressione Multipla La Regressione Multipla La regressione multipla
