LICEO SCIENTIFICO QUESTIONARIO QUESITO 1
|
|
|
- Cesarina Randazzo
- 9 anni fa
- Visualizzazioni
Transcript
1 LICEO SCIENTIFICO QUESTIONARIO QUESITO 1 y = f() ; il suo grafico è tangente alla retta y = + 5 nel secondo quadrante ed inoltre risulta: f () = + 6. Determinare l equazione y = f(). Risulta: f() = ( + 6) d = k (*) Inoltre deve essere f () = con <0; quindi: + 6 = se = ±, per noi = Per = - dall equazione della retta troviamo y=4+5=9. Quindi la funzione passa per il punto di coordinate (-;9). Imponiamo il passaggio per tale punto alla curva di equazione (*). 9 = k da cui k =. 3 3 La funzione riciesta a quindi equazione: y = f() = QUESITO Si ciede di determinare la formula del volume del tronco di cono: 3 V = 1 3 π (R + r + R r) Liceo Scientifico Quesiti 1/ 8
2 Il volume del tronco si può ottenere, per esempio, come volume del solido ottenuto dalla rotazione del segmento di estremi (0; r) e (; R) attorno all asse delle ; la retta passante per gli estremi del segmento a equazione: y = R r + r. Il volume riciesto si ottiene quindi mediante il seguente integrale definito: b V = π f ()d = a π [ 0 + r] d = π [( ) + r + r 0 ] d = = π [( ) r + r () ] = π [ r + Rr + R ] = π (R + r + R r) = V 0 = π [( ) r + r () ] = Dimostrazione geometrica Indiciamo con V il vertice del cono C di cui fa parte il tronco e sia k l altezza del cono C 1 ce a per base la base minore del tronco. Il volume del tronco si ottiene sottraendo al volume del cono C il volume del cono C 1. Dalla similitudine dei triangoli rettangoli VHB e VKD si a: VH: VK = R: r ( + k): k = R: r Quindi: r( + k) = kr, Si a perciò: Segue ce: r + rk kr = 0, k = r R r. V(C) = 1 3 πr ( + k) e V(C 1 ) = 1 3 πr k V(tronco) = V(C) V(C 1 ) = 1 3 πr ( + k) 1 3 πr k = = 1 3 π[r + R k r k] = 1 3 π[r + k(r r )] = 1 3 π [R + r ( )] = = 1 3 π [R + r ()(R + r)] = 1 3 π[r + r(r + r)] = 1 3 π(r + rr + r ) = V Liceo Scientifico Quesiti / 8
3 QUESITO 3 Lanciando una moneta sei volte qual è la probabilità ce si ottenga testa al più due volte? Qual è la probabilità ce si ottenga testa almeno due volte? La probabilità ce si ottenga testa in un lancio è ½. La probabilità ce si ottengano al più due teste in sei lanci è data da: p(al più due teste in sei lanci) = p(0 teste) + p(1 testa) + p( teste) Si tratta di una distribuzione binomiale, quindi, indicando con n il numero di prove, con k il numero di successi, con p la probabilità del successo e con q la probabilità dell insuccesso si a: p(k, n) = ( n k ) pk q n k Nel nostro caso n=6 e p=1/ e q=1/, quindi: p(0,6) = ( 6 0 ) (1 )0 ( 1 )6 = 1 64, p(1,6) = ( 6 1 ) (1 )1 ( 1 )5 = = 6 64 p(,6) = ( 6 ) (1 ) ( 1 4 ) 1 = = p(al più due teste in sei lanci) = p(0 teste) + p(1 testa) + p( teste) = = 64 = % 3 Seconda domanda: p(almeno due teste in sei lanci) = 1 p(0 teste) p(1 testa) Pertanto: p(almeno due teste in sei lanci) = 1 p(0 teste) p(1 testa) = = % Liceo Scientifico Quesiti 3/ 8
4 QUESITO 4 y = ln(), y = 1 ln(), y = ln() 3 3 Sostituiamo nella prima equazione differenziale: y + y = y; ln() ln() 3 = ln() ln() 3 + ln() = ln () : NO Sostituiamo nella seconda equazione differenziale: y + y = 1; 1 ln() + ln() 3 = 1 ln() = : NO Sostituiamo nella terza equazione differenziale: y = 1 + y; 1 ln() = 1 + ln() ln() = ln() : NO Sostituiamo infine nella quarta equazione differenziale: y + y + = y; ln() ln() + = ln() ; ln() = ln() verificato! QUESITO 5 Determinare un espressione analitica della retta perpendicolare nell origine al piano di equazione + y z = 0. La retta perpendicolare al piano dato a i parametri direttori proporzionali ai coefficienti di, y e z; quindi la retta a equazioni parametrice: = 0 + at { y = y 0 + bt z = z 0 + ct = t { y = t z = 0 1 t = t { y = t z = t = y { = z { y = 0 + z = 0 Liceo Scientifico Quesiti 4/ 8
5 QUESITO 6 f() = ( 1) + ( ) + ( 3) + ( 4) + ( 5) Si ciede di trovare il minimo della funzione (definita per tutti gli reali). Calcoliamo la derivata prima: f () = se 3 quindi: il grafico della funzione è crescente se >3 e decrescente se <3 ; pertanto: il minimo assoluto della funzione si a per =3 ed è f(3) = 10. QUESITO 7 Indicando con O il centro della circonferenza e con AB il lato del poligono regolare inscritto di n lati, l'area A(n) = S n del poligono si ottiene moltiplicando per n l'area del triangolo AOB. Essendo AO B = π e ricordando ce l'area di un triangolo si può calcolare come n semiprodotto di due lati per il seno dell'angolo compreso, si a: 1 n n n, come riciesto. Sn n Area(AOB) n r r sen r sen Risulta: Liceo Scientifico Quesiti 5/ 8
6 sen n n n n n n n lim r 1 r n n lim(s n) lim r sen lim r n n n Come è noto, il limite ottenuto non è altro ce l area del cercio. QUESITO 8 I lati di un triangolo misurano, rispettivamente, 6 cm, 6 cm e 5 cm. Preso a caso un punto P all interno del triangolo, qual è la probabilità ce P disti più di cm da tutti e tre i vertici del triangolo? La probabilità riciesta è data dal rapporto tra l area favorevole e l area possibile. Area favorevole= area triangolo area dei tre settori circolari di centri A,B e C con raggi e ampiezze pari agli angoli interni del triangolo; la somma dei tre settori equivale ad un settore circolare di ampiezza 180 (la somma dei tre angoli) e raggio, quindi ad un semicercio di raggio : π r = π. Per calcolare l area del triangolo ABC, isoscele sulla base AB, troviamo l altezza relativa a tale base: = 6 ( 5 ) Quindi: = = = Liceo Scientifico Quesiti 6/ 8
7 Area (ABC) = = Area (favorevole) = area(abc) area dei tre settori circolari = π 4 Infine: 5 Area (favorevole) p = Area (possibile) = π 8π = % QUESITO 9 f() = { k + k 1 < Dobbiamo determinare il parametro k in modo ce nell'intervallo [0, ] sia applicabile il teorema di Lagrange e trovare il punto di cui la tesi del teorema assicura l esistenza. Determiniamo k in modo ce la funzione sia continua in =1: si verifica facilmente ce la funzione è continua per ogni k, poicé il limite destro, il limite sinistro ed il valore ce la funzione assume in 1 sono uguali (esattamente ad 1). Dobbiamo imporre ce la funzione sia derivabile in =1. Risulta: in 0 < 1: f () = 3 e lim 1 (3 ) = 3 in 1 < : f () = k e lim 1 +( k) = k Dovrà essere: k = 3 k = 1 f() = { < Per tale valore di k la funzione è continua nell intervallo ciuso [0;] e derivabile nell aperto (0;): quindi sono soddisfatte le ipotesi del teorema di Lagrange. Pertanto esiste almeno un punto c interno all intervallo tale ce: f(b) f(a) b a = f (c) f() f(0) 0 = f (c) = 5 0 = 5 Osserviamo ce se =1 la derivata della funzione vale 3, quindi c non può essere 1; se è diverso da 1 otteniamo: Liceo Scientifico Quesiti 7/ 8
8 Se 0 < 1: 3 = 5, = 5 6 = ± 5 6 quindi c = 5 6 Se 1 < : + 1 = 5, = 3, = 3 4 non accettabile Il punto di cui la tesi del teorema assicura l esistenza è c = 5 6. QUESITO 10 Rappresentiamo graficamente la funzione ed il rettangolo: A(rettangolo) = 3 u = 6 u 4 S 1 = d = d = 1 S = 6 u 14 3 u = 4 3 u. Quindi: [ ] = [ ] = = 14 3 u S 1 S = = 7 Con la collaborazione di Angela Santamaria Liceo Scientifico Quesiti 8/ 8
LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2016 QUESTIONARIO QUESITO 1. lim. = lim cos(x) = 1 2 QUESITO 2
www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 6 QUESTIONARIO QUESITO Calcolare il limite: sen(cos(x) ) lim x ln (cos (x)) Ricordiamo che, se f(x) tende a zero, risulta: senf(x)~f(x) ed ln (
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
LICEO SCIENTIFICO QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 7 - QUESTIONARIO QUESITO Definito il numero E come: E = e d, dimostrare che risulta: e d = e E esprimere e d in termini di e ed E. Cerchiamo una primitiva di e integrando
PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI
www.matefilia.it PRIMA SIMULAZIONE - 0 DICEMBRE 05 - QUESITI Q Lanciando una coppia di dadi cinque volte qual è la probabilità che si ottenga un punteggio totale maggiore di sette almeno due volte? Calcoliamo
AMERICHE QUESTIONARIO QUESITO 1
www.matefilia.it AMERICHE 26 - QUESTIONARIO QUESITO Tre circonferenze di raggio sono tangenti esternamente una all altra. Qual è l area della regione interna che esse delimitano? Osserviamo che il triangolo
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si determini il campo di esistenza della funzione y = (x 2 3x) 1 x 4. Ricordiamo che il campo di esistenza di una funzione del
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI 8 - SESSIONE SUPPLETIVA QUESITO Si determinino le costanti a e b in modo tale che la funzione: ax + b per x f(x) = { e x per x > x risulti continua e derivabile nel punto x=. Per essere
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI - SESSIONE SUPPLETIVA QUESITO Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 6 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva
ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani
ORDINAMENTO 2004 SESSIONE SUPPLETIVA - PROBLEMA 2
www.matefilia.it ORDINAMENTO 004 SESSIONE SUPPLETIVA - PROBLEMA Una piramide ha per base il quadrato ABCD di lato lungo 7 cm. Anche l altezza VH della piramide è lunga 7 cm e il suo piede H è il punto
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1
www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata
Problemi di massimo e minimo
Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi
Esame di maturità scientifica, corso di ordinamento a. s
Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).
ORDINAMENTO 2009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si inscriva in una semisfera di raggio R il tronco di cono di massima superficie laterale, avente la base maggiore coincidente
SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO. t ed è nulla per t 0. Vale il limite:
Simulazione /6 ANNO SCOLASTICO /6 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Risoluzione Problema Conversazioni telefoniche a) La funzione f t è continua e derivabile
PNI 2014 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it PNI 0 SESSIONE STRAORDINARIA - QUESITI QUESITO Un gruppo di attivisti antinucleari ha organizzato una marcia di protesta verso un sito scelto per la costruzione di una centrale termonucleare.
2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.
CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere
Soluzioni dei problemi della maturità scientifica A.S. 2007/2008
Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto
COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1
www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 2016 - QUESTIONARIO QUESITO 1 È noto che e x2 dx = π. Stabilire se il nmero reale, tale che e x2 dx = 1, è positivo o negativo. Determinare inoltre i valori
SIMULAZIONE - 22 APRILE 2015 - PROBLEMA 2: IL VASO
www.matefilia.it SIMULAZIONE - 22 APRILE 2015 - PROBLEMA 2: IL VASO L'azienda in cui lavori produce articoli da giardino e sei stato incaricato di rivedere il disegno di un vaso portafiori realizzato da
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI 009 - SESSIONE SUPPLETIVA QUESITO 1 Nel gioco del lotto, qual è la probabilità dell estrazione di un numero assegnato? Quante estrazioni occorre effettuare perché si possa aspettare,
Soluzioni della prova di Matematica Maturità 2015
Soluzioni della prova di Matematica Maturità 015 Lara Charawi 1, Alberto Cogliati e Luca Magri 1 Dipartimento di Matematica, Università degli Studi di Pavia Dipartimento di Matematica, Università degli
Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema
Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che
LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1 È noto che e x2 dx = π. Stabilire se il nmero reale, tale che e x2 dx = 1, è positivo o negativo. Determinare inoltre i valori dei segenti
Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale è la capacità in litri del serbatoio?
Quesiti ord 011 Pagina 1 di 6 a cura dei Prof. A. Scimone, G. Florio,. R. Sofia Quesito 1 Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale
Scuole italiane all estero (Calendario australe) 2007 Suppletiva QUESITO 1
www.matefilia.it Scuole italiane all estero (Calendario australe) 2007 Suppletiva QUESITO 1 Si vuole che delle due radici dell equazione x 2 + 2(h + 1)x + m 2 h 2 = 0 una risulti doppia dell altra. Quale
Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PROBLEMA 1 Del triangolo ABC si
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva
ESAME DI STAT DI LIE SIENTIFI RS SPERIMENTALE P.N.I. 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRLEMA Si consideri la funzione
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2005
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 5 Il candidato risolva uno dei due problemi e cinque quesiti scelti nel questionario. PROBLEMA Nel primo quadrante del sistema di riferimento Oy,
la velocità degli uccelli è di circa (264:60= 4.4) m/s)
QUESTIONARIO 1. Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 260 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si allontana da lei in linea retta,
MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO
Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA
4^C - Esercitazione recupero n 4
4^C - Esercitazione recupero n 4 1 Un filo metallico di lunghezza l viene utilizzato per deitare il perimetro di un'aiuola rettangolare a Qual è l'aiuola di area massima che è possibile deitare? b Lo stesso
LA CIRCONFERENZA e IL CERCHIO
LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più
Corso di ordinamento- Sessione ordinaria all estero (AMERICHE) - a.s Soluzione di De Rosa Nicola
Corso di ordinamento- Sessione ordinaria all estero (AMERICHE) - a.s. 007-008 MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLE ITALIANE ALL ESTERO (AMERICHE) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in
A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca
Pag. 1/5 Sessione suppletiva 01 $$$$$..1/1 Seconda prova scritta *$$$$$1115* *$$$$$1115* *$$$$$1115* *$$$$$1115* A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato
Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto
La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.
1 I solidi a superficie curva
1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 Sessione straordinaria
ESME DI STTO DI LICEO SCIENTIFICO CORSO DI ORDINMENTO 006 Sessione straordinaria Il candidato risolva uno dei due problemi e dei 0 quesiti in cui si articola il questionario. PROBLEM È dato il triangolo
Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze
Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.
2. Rappresenta graficamente la regione di piano soluzione del seguente sistema di disequazioni: 4<0
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2010-2011 Prova di Matematica : T. Pitagora T. Euclide Disequazioni Alunno: Classe: 2 C 14.04.2011 prof. Mimmo Corrado 1. Risolvi le seguenti disequazioni:
M557 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO. Tema di: MATEMATICA
Maturità Sessione suppletiva 999 M7 ESAME DI STATO DI LICEO SCIENTIFICO COSO DI ODINAMENTO Tema di: MATEMATICA Il candidato scelga a suo piacimento due dei seguenti problemi e li risolva:. Data una semicirconferenza
ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011
ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta
D. 1 Il prodotto di a = 12,37 e b = 25,45
Settembre 005 Aritmetica D. Il prodotto di a =,7 e b = 5,45 A 4, 867 B 4, 65 C 45, 650 D 4, 865 E 4, 8655 D. L inverso del numero numero: A 5 B 5 + 5 C + 5 D E D. I numeri 5 è il,4,5,0,00, si ordinano
Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010
Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
PNI QUESITO 1 QUESITO 2
www.matefilia.it PNI 0014 QUESITO 1 Per il teorema dei seni risulta: = da cui sen α = Quindi α = arcsen ( ) che porta alle due soluzioni: α 41,810 41 49 α 138 11 QUESITO I poliedri regolari (solidi platonici)
Problemi sull ellisse
1 equazione dell ellisse Determina l equazione di un ellisse che ha i fuochi sull asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 6 + yy Scrivi l equazione dell ellisse con i fuochi
I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica
I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio
SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE
SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei
2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2
Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili
Corso di ordinamento- Sessione ordinaria all estero (EUROPA) - a.s Soluzione di De Rosa Nicola
Corso di ordinamento- Sessione ordinaria all estero (EUROPA - a.s. 007-008 MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLE ITALIANE ALL ESTERO (EUROPA ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria
D4. Circonferenza - Esercizi
D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),
Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia
Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Solidi di rotazione Un solido di rotazione è generato dalla rotazione
ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.
. Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione
Esercizi di Elementi di Matematica Corso di laurea in Farmacia
Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando
risoluzione della prova
Verso la seconda prova di matematica 7 Risoluzione della prova verso la seconda prova di matematica 7 risoluzione della prova Problemi 7 a Determiniamo l equazione della parabola di vertice V`; j e passante
ESAME DI STATO DI LICEO SCIENTIFICO Corso Sperimentale P.N.I. Tema di MATEMATICA - 17 giugno 2004
ESAME DI STATO DI LICEO SCIENTIFICO 00-004 Corso Sperimentale PNI Tema di MATEMATICA - 7 giugno 004 Svolgimento a cura della profssa Sandra Bernecoli e del prof Luigi Tomasi (luigitomasi@liberoit) RISOLUZIONE
ESAME DI STATO 2017 TEMA DI MATEMATICA. Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario.
ESAME DI STATO 217 TEMA DI MATEMATICA Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Problema 1 Si può pedalare agevolmente su una bicicletta a ruote quadrate? A New
Risposte ai quesiti D E H D
Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia
La circonferenza e il cerchio
La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una
Esercizi sulle superfici - aprile 2009
Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:
1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.
Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente
CALENDARIO BOREALE 1 EUROPA 2015 PROBLEMA 1
www.matefilia.it Indirizzi: LI2, EA2 SCIENTIFICO; LI - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 1 EUROPA 21 PROBLEMA 1 Sei il responsabile del controllo della navigazione della nave indicata
Appunti ed esercizi di geometria analitica PRIMA PARTE
Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 006 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Nel piano, riferito
Anno 4 Superficie e volume dei solidi
Anno 4 Superficie e volume dei solidi Introduzione In questa lezione parleremo del volume e della superficie dei solidi, imparando a trattare con semplicità il loro calcolo tramite le formule Al termine
GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche
GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell
Elementi di Geometria euclidea
Elementi di Geometria euclidea Proprietà dei triangoli isosceli Il triangolo isoscele ha almeno due lati congruenti, l eventuale lato non congruente si chiama base, i due lati congruenti si dicono lati
Esame di stato - liceo scientifico P.N.I. - Matematica - a.s Giovanni Torrero
Esame di stato - liceo scientifico P.N.I. - Matematica - a.s. 2008-2009 Giovanni Torrero E-mail address: [email protected] CAPITOLO 1 Problemi 1.1. Primo problema Testo: Sia f la funzione definita
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
Versione di Controllo
Università degli Studi di Trento test di ammissione ai corsi di laurea in Fisica - Matematica - Informatica Ingegneria dell Informazione e Organizzazione d Impresa Ingegneria dell Informazione e delle
Soluzione Problema 1
Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed
DERIVATE E LORO APPLICAZIONE
DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x
Soluzioni dei problemi della maturità scientifica A.S. 2012/2013
Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +
SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO
ANNO SCOLASTICO 2012-13 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO DI ORDINAMENTO Risoluzione Problema 1 a) Poiché per ogni valore di a l espressione analitica
A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca
Pag. 1/6 Sessione suppletiva 013 A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato ai corsi sperimentali, il secondo ai corrispondenti corsi di ordinamento e ai
RISPOSTE MOTIVATE QUIZ D AMMISSIONE MATEMATICA
RISPOSTE MOTIVATE QUIZ D AMMISSIONE 1999-2000 MATEMATICA 76. A cosa è uguale: a-b? A) a-b = (- b-a) B) a-b = (- a-b) C) a-b = (a/b) D) a-b = -( b- a) E) a-b = 1/(ab) L espressione a-b costituisce un polinomio,
TEST SULLE COMPETENZE Classe Seconda
TEST SULLE COMPETENZE Classe Seconda 1 Una sola tra le seguenti proposizioni è FALSA Quale? A Se due punti A e B hanno la stessa ascissa, il coefficiente angolare della retta che li contiene non è definito
Elementi di Geometria euclidea
Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione straordinaria
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 006 Sessione straordinaria Il candidato risolva uno dei due problemi e dei 0 quesiti in cui si articola il questionario. PROBLEMA È dato il
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni
a) S/ 4; b) S/ 8; c) S/12; d) S/16; e) Nessuna delle precedenti. 2. Due triangoli sono congruenti se hanno congruenti:
1. Sia ABC un triangolo equilatero di area S. Siano L, M, N, i punti medi dei lati AB, BC, CA, e E, F, D, i punti medi dei lati LM, MN, NL.. L area del triangolo DEF è uguale a: a) S/ 4; b) S/ 8; c) S/12;
SIMULAZIONE - 10 DICEMBRE PROBLEMA 2: IL GHIACCIO
www.matefilia.it SIMULAZIONE - 10 DICEMBRE 015 - PROBLEMA : IL GHIACCIO Il tuo liceo, nell'ambito dell'alternanza scuola lavoro, ha organizzato per gli studenti del quinto anno un attività presso lo stabilimento
Proposta di soluzione della prova di matematica Liceo scientifico PNI
Proposta di soluzione della prova di matematica Liceo scientifico PNI - 14 Problema 1 Punto a) In A e O, g non è derivabile in quanto la tangente risulta verticale (punto di cuspide). Stesso dicasi per
SOLUZIONI DEI QUESITI PROPOSTI
SOLUZIONI DEI QUESITI PROPOSTI Manca di mentalità matematica tanto chi non sa riconoscere rapidamente ciò che è evidente, quanto chi si attarda nei calcoli con una precisione superiore alla necessità QUESITO
Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008
Soluzioni dei quesiti della maturità scientifica A.S. 007/008 Nicola Gigli Sun-Ra Mosconi 19 giugno 008 1. La proposizione è falsa. Per trovare un controesempio ad essa, si consideri un qualunque piano
