τ (O) r F è semplicemente l intensità della forza F dal polo O: = r F sinθ = bf

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "τ (O) r F è semplicemente l intensità della forza F dal polo O: = r F sinθ = bf"

Transcript

1 5. Momenti, forze centrali e gravitazione Definizione di momento di una forza Si definisce momento della forza F rispetto al polo O la quantità data dal prodotto vettoriale τ (O) r F il cui modulo si misura in Nm. - Il modulo di τ (O) è semplicemente l intensità della forza F moltipicata per il braccio b, ovvero la distanza della retta d azione di F dal polo O: τ (O) = r F sinθ = bf - In alternativa, il modulo del momento si può vedere come il prodotto di r per la componente della forza perpendicolare a r, cioè F sinθ. - Attenzione a non scambiare l ordine dei fattori nella definizione, perchè il prodotto vettoriale cambia segno! - Se la retta d azione di F passa per O il momento è ovviamente nullo! - Fisicamente, il momento esprime la tendenza della forza attorno al polo O F a indurre una rotazione - Il verso del vettore fornito dal prodotto vettoriale è associato al senso di rotazione indotta dalla forza Definizione di momento angolare (o della quantità di moto) Si definisce momento angolare di una particella di massa m con quantità di moto p = m v la seguente grandezza vettoriale, calcolata rispetto al polo O: L (O ) r p il cui modulo si misura in kgm /s.

2 NOTA: la definizione di momento della quantità di moto è esattamente analoga a quella di momento della forza. Valgono tutte le considerazioni fatte prima per il momento della forza. Fisicamente, il momento angolare serve a quantificare il concetto di rotazione attorno a un punto. Questo fatto è evidente se si calcola la rapidità di variazione del momento angolare, che risulta uguale al momento della forza rispetto a O: dl (O) = d r dt dt p + r d p dt = r F = τ (O) essendo v p = 0 in quanto i due vettori sono paralleli. Forze centrali Una classe importante è rappresentata dalle forze centrali, cioè che agiscono su un corpo in modo che la loro retta d azione sia sempre diretta verso un punto ben definito dello spazio ( centro della forza). Per esempio, le forze gravitazionali ed elettriche sono centrali. Assumendo come polo O per il calcolo dei momenti il centro della forza, siccome questa è necessariamente parallela al vettore r, si ha d L (O) dt = r F = τ (O ) = 0 Quindi le forze centrali conservano il momento angolare. Inoltre, una forza centrale che dipende solo dalla distanza r dal centro O (come quelle elettriche e gravitazionale) è anche conservativa. Sia infatti F ( r ) = f (r) u r : dw = F d r = f (r) u r (dr u r + rdθ u θ ) = f (r)dr

3 r B W A B = f (r)dr = U(r B ) U(r A ) r A [ ] essendo U(r) evidentemente la primitiva di f(r): ciò dimostra che il lavoro dipende solo dalla posizioni iniziale e finale, non dalla traiettoria. Nel calcolo si è convenientemente scomposto lo spostamento infinitesimo dr nelle sue componenti radiale (parallela alla forza) e trasversale (normale alla forza). Esempio: calcolare l accelerazione angolare di un pendolo costituito da una massa m appesa a un filo inestensibile e di massa trascurabile. Supporre che il pendolo parta da fermo in posizione orizzontale, e scenda nel piano verticale. Il momento angolare rispetto a O per un angolo generico è: L (O ) (θ ) = l mv(θ ) Poichè la forza peso dà momento rispetto a O mentre la tensione del filo è centrale : τ (O ) (θ) = mgl cosθ L equazione di rotazione è quindi dl (O) dt = l m dv dt = τ (O) = m gl cosθ Introducendo la velocità angolare v = ω l e l accelerazione angolare α = dω dt : α = g l cosθ Questo fornisce l andamento di α in funzione dell angolo: inizialmente α è massima, mentre è minima quando il pendolo passa per il punto più basso, iniziando a decelerare.

4 Gravitazione Secondo la legge di gravitazione universale di Newton, la forza di attrazione sentita da un corpo puntiforme di massa m a causa di un secondo corpo puntiforme di massa M può essere espressa come F = G M m r dove G= Nm /kg è la costante di gravitazione universale. Per la legge di azione-reazione, M sente una forza uguale e opposta causata da m. u r La legge di gravitazione universale fu inizialmente suggerita dall osservazione del moto della Luna attorno alla Terra, approssimandone la traiettoria con una circonferenza. Consideriamo un corpo che cade in prossimità della superficie terrestre: la sua accelerazione è g. Nota la misura del raggio dell orbita lunare RL per via geometrica, essendo anche noto il periodo di rotazione (mese) lunare, si ha la misura dell accelerazione orbitale della Luna, ω R L. Il passo concettuale profondo compiuto da Newton è stato di interpretare sia il moto lunare orbitale che quello del corpo che cade sulla Terra come effetto dello stesso fenomeno di attrazione gravitazionale: supponendo che questa forza agisca con l inverso del quadrato della distanza (dall analisi del moto dei pianeti svolta da Keplero), detto RT il raggio della Terra si deve verificare che il rapporto fra le accelerazioni di movimento deve uguagliare il rapporto delle accelerazioni dettate dalla forza gravitazionale : a L a T moto = ω R L g = R T R L Essendo effettivamente verificata quest uguaglianza, come si può notare inserendo i valori numerici per i vari parametri, si ha una prima indicazione che la legge di gravitazione universale è corretta. = a L a T forza

5 Distinzione tra massa inerziale e gravitazionale A rigore, le masse che si inseriscono nella legge di gravitazione sarebbero cariche gravitazionali, che non necessariamente coincidono con le masse inerziali determinate negli esperimenti tipo urto, come visto nell introduzione alla dinamica. Sia allora M * la carica gravitazionale della Terra e m * quella di una generica massa di prova, di cui misuriamo l accelerazione a di caduta libera. Secondo la legge della dinamica, il prodotto (massa inerziale m) (accelerazione a) = (forza fisica agente su m) è m a = G * m * M * Siccome è verificato sperimentalmente con grande accuratezza che a non dipende dal tipo di massa di prova (cioè a è una costante per tutti i corpi in caduta libera), possiamo osservare che la quantità m m a = M * * G* è una costante, pertanto massa inerziale e carica o massa gravitazionale devono stare in un rapporto fisso, γ = m m *. Questo equivale a scrivere la legge di gravitazione universale servendosi delle masse inerziali al posto di quelle gravitazionali: F = G* γ m M = G m M e la costante di gravitazione G, fisicamente misurabile in base all analisi del moto dei corpi, include intrinsecamente il rapporto γ fra massa inerziale e gravitazionale. Leggi delle orbite (di Keplero) Furono dedotte sulla base dei dati misurati per il moto dei pianeti. Consideriamo per semplicità un corpo di massa m in orbita attorno ad un secondo di massa M>>m (es. Sole). 1. Le orbite possibili in sistemi a due corpi sono sezioni coniche (ellissi, parabole, iperboli). Il corpo con M>>m occupa un fuoco dell orbita. La dimostrazione del caso generale è laboriosa. L orbita circolare, facilmente dimostrabile, è un semplice caso particolare.. La massa m spazza aree uguali in tempi uguali. Questa indicazione all apparenza astrusa fu di grande importanza per stabilire la natura centrale della forza gravitazionale.

6 3. Il rapporto tra quadrato del periodo orbitale (per un orbita chiusa, cioè ellittica) e il cubo del semiasse maggiore dell orbita non dipende da m, ma è costante per tutti i pianeti. Questo risultato contiene la prova che la legge di gravitazione effettivamente è proporzionale al prodotto delle masse e inversamente proporzionale al quadrato della distanza. Proviamo per esercizio la seconda legge di Keplero. Introduciamo il concetto di velocità areolare (area spazzata dal vettore posizione r nell unità di tempo): da dt = r(rdθ) / = r dθ dt dt Notiamo che il momento angolare rispetto a O (centro attrattore) è proporzionale alla velocità areolare, quindi anch esso è costante: L (O ) = rmv θ = r m rdθ = mr dθ da = m dt dt dt Questo mostra che nel moto lungo l orbita la forza gravitazionale applicata a m deve essere necessariamente centrale per mantenere nullo il suo momento rispetto a O e quindi per mantenere costante momento angolare e velocità areolare (quella effettivamente misurata da Keplero). La terza legge di Keplero può essere verificata in maniera immediata nel caso dell orbita circolare. Usando la legge della dinamica e attribuendo il moto alla forza gravitazionale (radiale, diretta al centro dell orbita): m a = G M m R ed essendo il moto circolare, a = ω R. Ricordiamo che ω = π / T. Quindi: 4π R T = G M R

7 R 3 T = G M 4π Pertanto il rapporto R 3 /T è costante per tutti i corpi in orbita a uno stesso attrattore di massa M (per esempio per tutti i pianeti nel sistema solare, o tutti i satelliti della Terra). Si noti che abbiamo automaticamente verificato che l orbita circolare (con velocità costante in modulo) è compatibile con la legge di gravitazione universale (caso particolare della I legge di Keplero). Energia potenziale gravitazionale Avendo dimostrato in precedenza che una forza centrale dipendente solo dalla distanza dal centro è conservativa, possiamo determinare immediatamente l espressione dell energia potenziale gravitazionale nel caso più generale: r B W A B = G M m dr = GM m r r A r B U(r) = G M m r G M m r A Apparentemente questa non sembra nemmeno lontana parente della familiare U(y) = mg y valida nell approssimazione di forza e accelerazione gravitazionali costanti. Il punto è che tale approssimazione vale solo in prossimità della superficie terrestre, cioè a distanza r RT dal centro della Terra. Se teniamo conto di piccoli spostamenti verticali y rispetto a tale distanza di riferimento (in su o in giù), cioè r=rt +y, possiamo scrivere U(y) = G M m + y G M m 1 y = G M m + GM m y Si è usata l approssimazione 1/(1+x) 1-x valida per x <<1. Si noti che il primo termine del membro di destra è una costante e pertanto non è significativo (l energia potenziale è definita a meno di una costante), mentre il secondo è esattamente mgy. Esempio: calcolo della velocità di fuga vf che occorre per uscire definitivamente dall influenza gravitazionale di un corpo di massa M e raggio R.

8 Basta determinare la velocità che deve avere una generica massa m a distanza R dal centro di attrazione per arrivare a distanza infinitamente grande con velocità minima in modulo, cioè nulla: 1 mv F G M m = 0 R Si noti che anche l energia potenziale si annulla all infinito. Quindi: v F = G M R Il risultato non dipende dalla massa m, ma solo da quella dell attrattore M. Esempio: un satellite sente una forza frenante da parte degli strati più alti dell atmosfera, pari a f = k v Supponendo che l azione di tale forza sia sufficientemente debole da mantenere l orbita di forma circolare in prima approssimazione, determinare come si riduce il diametro dell orbita in funzione del tempo. L energia totale per un satellite in orbita circolare di raggio r si trova così: E(r) = 1 mv G M m r = G M m r (essendo mv / r = GM m/ r ) Il tasso di diminuzione dell energia totale (ossia la potenza dissipata) è chiaramente dovuto alla forza frenante, cioè: de dt = f v = k v de dt = de dr = k v dr dt G M m dr r dt = k G M r dr dt = k r r(t) = r(0)e k t

9 Quindi l orbita decade secondo una legge esponenziale, tanto più rapidamente quanto maggiore è la costante k. Si noti che, al contrario, la velocità aumenta esponenzialmente mentre m precipita verso il pianeta!

LA GRAVITAZIONE. Legge di Gravitazione Universale 08/04/2015 =6, /

LA GRAVITAZIONE. Legge di Gravitazione Universale 08/04/2015 =6, / LA GRAVITAZIONE Definizione (forza di attrazione gravitazionale) Due corpi puntiformi di massa e si attraggono vicendevolmente con una forza (forza che il corpo A esercita sul corpo B), o (forza che il

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Gravità e moti orbitali. Lezione 3

Gravità e moti orbitali. Lezione 3 Gravità e moti orbitali Lezione 3 Sommario Brevi cenni storici. Le leggi di Keplero e le leggi di Newton. La forza di gravitazionale universale e le orbite dei pianeti. 2 L Universo Geocentrico La sfera

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali Forza gravitazionale e forza peso massa e peso, peso apparente Forze normali Moto circolare

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

1. Le leggi di Keplero Fino al 1600 si credeva che: la Terra fosse al centro dell'universo, con il Sole e i pianeti orbitanti attorno (modello

1. Le leggi di Keplero Fino al 1600 si credeva che: la Terra fosse al centro dell'universo, con il Sole e i pianeti orbitanti attorno (modello La gravitazione 1. Le leggi di Keplero Fino al 1600 si credeva che: la Terra fosse al centro dell'universo, con il Sole e i pianeti orbitanti attorno (modello geocentrico); i corpi celesti, sferici e perfetti,

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Moto circolare uniforme

Moto circolare uniforme Moto circolare uniforme Un oggetto si muove lungo una circonferenza con velocità costante T, il tempo che impiega a tornare al punto di partenza, è il periodo f = 1/T è la frequenza (s 1 o Hertz (Hz))

Dettagli

Gravità e moti orbitali. Lezione 3

Gravità e moti orbitali. Lezione 3 Gravità e moti orbitali Lezione 3 Sommario Brevi cenni storici. Le leggi di Keplero e le leggi di Newton. La forza di gravitazionale universale e le orbite dei pianeti. 2 L Universo Geocentrico La sfera

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Esercitazione VI - Leggi della dinamica III

Esercitazione VI - Leggi della dinamica III Esercitazione VI - Leggi della dinamica III Esercizio 1 I corpi 1, 2 e 3 rispettivamente di massa m 1 = 2kg, m 2 = 3kg ed m 3 = 4kg sono collegati come in figura tramite un filo inestensibile. Trascurando

Dettagli

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac La DINAMICA è il ramo della meccanica che si occupa dello studio del moto dei corpi e delle sue cause o delle circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica Esercizi: Dinamica Appunti di lezione Indice Dinamica 3 Le quattro forze 4 Le tre

Dettagli

Densità e volume specifico

Densità e volume specifico Densità e volume specifico Si definisce densità di un corpo,, il rapporto tra la sua massa, m, e il suo volume, V; essa quantifica la massa dell unità di volume. m = = V [ kg] 3 [ m ] E utile considerare

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

Lezione 5 MOTO CIRCOLARE UNIFORME

Lezione 5 MOTO CIRCOLARE UNIFORME Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 MOTO CIRCOLARE UNIFORME 2 Per descrivere un moto curvilineo occorrono due assi cartesiani ortogonali ed un orologio.

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Verifica sommativa di Fisica Cognome...Nome... Data

Verifica sommativa di Fisica Cognome...Nome... Data ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede Associata Liceo "B.Russell" Verifica sommativa di Fisica Cognome........Nome..... Data Classe 4B Questionario a risposta multipla Prova di uscita di

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0.

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0. 8. Oscillazioni Definizione di oscillatore armonico libero Si tratta di un sistema soggetto ad un moto descrivibile secondo una funzione armonica (seno o coseno) del tipo x(t) = Acos( 0 t + ) A è l ampiezza

Dettagli

, conservaz del mom della quant di moto, in cui abbiamo 3 cost scalari.

, conservaz del mom della quant di moto, in cui abbiamo 3 cost scalari. Il probl degli N corpi consiste nello studio del moto di un sistema di n punti di massa, soggetti alle mutue interazioni gravitaz descritte dalla legge newtoniana. L obiettivo è quello di identificare

Dettagli

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Dinamica Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Cinematica Moto rettilineo uniforme s=s 0 +v(t-t 0 ) Moto uniformemente accelerato v=v 0 +a(t-t

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J Esercitazione 3 Esercizio 1 - Lavoro Una particella è sottoposta ad una forza F = axy û x ax 2 û y, dove û x e û y sono i versori degli assi x e y e a = 6 N/m 2. Si calcoli il lavoro compiuto dalla forza

Dettagli

1 di 5 12/02/ :23

1 di 5 12/02/ :23 Verifica: tibo5794_me08_test1 nome: classe: data: Esercizio 1. La traiettoria di un proiettile lanciato con velocità orizzontale da una certa altezza è: un segmento di retta obliqua percorso con accelerazione

Dettagli

f s m s n f s =f s,max =m s n f d =m d n

f s m s n f s =f s,max =m s n f d =m d n Serway, Jewett Principi di Fisica IV Ed. Capitolo 5 Sperimentalmente: f s m s n Con m s costante di attrito statico; n=modulo della forza normale. L uguaglianza vale quando (in condizioni di moto imminente):

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileana 014-015 Problema 1 Nella regione di spazio interna alla sfera S 1, centrata in O 1 e di raggio R 1, è presente una densità di carica di volume

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

Lavoro. Energia. Mauro Saita Versione provvisoria, febbraio Lavoro è forza per spostamento

Lavoro. Energia. Mauro Saita   Versione provvisoria, febbraio Lavoro è forza per spostamento Lavoro. Energia. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2015. Indice 1 Lavoro è forza per spostamento 1 1.1 Lavoro compiuto da una forza variabile. Caso bidimensionale..........

Dettagli

Il campo elettrico. Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore

Il campo elettrico. Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore Il campo elettrico Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore Legge di Coulomb I primi studi sulle forze agenti tra corpi elettrizzati si devono a COULOB il quale, verso la fine del

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

LAVORO ED ENERGIA. Dott.ssa Silvia Rainò

LAVORO ED ENERGIA. Dott.ssa Silvia Rainò 1 LAVORO ED ENERGIA Dott.ssa Silvia Rainò Lavoro ed Energia 2 Consideriamo il moto di un oggetto vincolato a muoversi su una traiettoria prestabilita, ad esempio: Un treno vincolato a muoversi sui binari.

Dettagli

Studio delle oscillazioni di un pendolo fisico

Studio delle oscillazioni di un pendolo fisico Studio delle oscillazioni di un pendolo fisico Materiale occorrente: pendolo con collare (barra metallica), supporto per il pendolo, orologio, righello. Richiami di teoria Un pendolo fisico è costituito

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Lezione 4. Meccanica del punto materiale Dinamica

Lezione 4. Meccanica del punto materiale Dinamica Lezione 4 Meccanica del punto materiale Dinamica Forze di attrito Se si misura sperimentalmente la legge del moto di un corpo che cade liberamente nell atmosfera si verifica il moto che non e esattamente

Dettagli

Determinazione degli Elementi Orbitali di un Corpo Celeste noti i Vettori r e V all istante t. Giuseppe Matarazzo

Determinazione degli Elementi Orbitali di un Corpo Celeste noti i Vettori r e V all istante t. Giuseppe Matarazzo Determinazione degli Elementi Orbitali di un Corpo Celeste noti i Vettori r e V all istante t Giuseppe Matarazzo Febbraio 2003 Dicembre 2008 2 I vettori Posizione e Velocità I vettori r, V assegnati La

Dettagli

(Proff. A. Bertin, D. Galli, N. Semprini Cesari, A. Vitale e A. Zoccoli) 10/07/2002. (1) (Quesiti)

(Proff. A. Bertin, D. Galli, N. Semprini Cesari, A. Vitale e A. Zoccoli) 10/07/2002. (1) (Quesiti) (1) (Quesiti) 1. Ricavare l espressione dell energia meccanica totale E di un punto materiale P che compie oscillazioni armoniche semplici di ampiezza l attorno all origine dell asse x sotto l azione di

Dettagli

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna)

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) 7 giugno 2013 1 Errori di misura Errore sulle misure dirette: Errore massimo (il risultato della misura non fluttua): 1 oppure

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici meccanici Sistemi meccanici in traslazione: elementi base Sistemi in traslazione: equazioni del moto Sistemi in traslazione: rappresentazione

Dettagli

Alcuni problemi di meccanica

Alcuni problemi di meccanica Alcuni problemi di meccanica Giuseppe Dalba Sommario Questi appunti contengono cinque problemi risolti di statica e dinamica del punto materiale e dei corpi rigidi. Gli ultimi quattro problemi sono stati

Dettagli

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni

Dettagli

FISICA. Lezione n. 5 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano

FISICA. Lezione n. 5 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano Università degli Studi di Milano Facoltà di Scienze Matematiche Fisiche e Naturali Corsi di Laurea in: Inormatica ed Inormatica per le Telecomunicazioni Anno accademico 00/, Laurea Triennale, Edizione

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

4. I principi della meccanica

4. I principi della meccanica 1 Leggi del moto 4. I principi della meccanica Come si è visto la cinematica studia il moto dal punto di vista descrittivo, ma non si sofferma sulle cause di esso. Ciò è compito della dinamica. Alla base

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere Facoltà di Farmacia - Anno Accademico 2014-2015 A 08 Aprile 2015 Esercitazione in itinere Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio

Dettagli

!" #$ !" #$!" !" #$!" !" #$!" % & ' !" #$!" % & ' ()*+,+ !" #$!" % & ' ()*+,+!" #$!" - $ !" #$!" % & ' ()*+,+!" #$!" - $! % % )./+0+*,).+,.+1+ %% % )./+0+*,).+,.+1+ %% +2 $ 3*)4.24*1"5* 3*)6+2++0)1,25

Dettagli

Cap 7 - Lavoro ed energia Lavoro di una forza costante

Cap 7 - Lavoro ed energia Lavoro di una forza costante N.Giglietto A.A. 2005/06-7.3 - Lavoro di una forza costante - 1 Cap 7 - Lavoro ed energia Abbiamo visto come applicare le leggi della dinamica in varie situazioni. Spesso però l analisi del moto spesso

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2009/2010, Fisica 1

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2009/2010, Fisica 1 C.d.L. Scienze Forestali e Ambientali, A.A. 2009/2010, Fisica 1 Unità di misura - misurare oggetti - grandezze fisiche: fondamentali: lunghezza, tempo, massa, intensità di corrente, temperatura assoluta,

Dettagli

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare.

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare. 2ª lezione (21 ottobre 2006): Che cos è una forza? Idea intuitiva: forza legata al concetto di sforzo muscolare. L idea intuitiva è corretta, ma limitata ; le forze non sono esercitate solo dai muscoli!

Dettagli

ESA/Rosetta/Philae/CIVA. Progetto MISSIONE ROSETTA GRUPPO ORBITE: Massai Elisabetta 5 B Bardelli Francesca 5 B Benini Marta 5 B

ESA/Rosetta/Philae/CIVA. Progetto MISSIONE ROSETTA GRUPPO ORBITE: Massai Elisabetta 5 B Bardelli Francesca 5 B Benini Marta 5 B ESA/Rosetta/Philae/CIVA Progetto MISSIONE ROSETTA GRUPPO ORBITE: Massai Elisabetta 5 B Bardelli Francesca 5 B Benini Marta 5 B Prima di parlare dell orbita della cometa 67P/Churyumov-Gerasimenko e delle

Dettagli

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA 1) Descrivi, per quanto possibile, il moto rappresentato in ciascuno dei seguenti grafici: s a v t t t S(m) 2) Il moto di un punto è rappresentato

Dettagli

4 FORZE FONDAMENTALI

4 FORZE FONDAMENTALI FORZA 4! QUANTE FORZE? IN NATURA POSSONO ESSERE OSSERVATE TANTE TIPOLOGIE DI FORZE DIVERSE: GRAVITA' O PESO, LA FORZA CHE SI ESERCITA TRA DUE MAGNETI O TRA DUE CORPI CARICHI, LA FORZA DEL VENTO O DELL'ACQUA

Dettagli

a) compressione adiabatica fino alla pressione p 2 = kg/cm 2 ;

a) compressione adiabatica fino alla pressione p 2 = kg/cm 2 ; PROBLEMI I primi tre problemi sono tratti dal libro P. Fleury, J.P. Mathieu, Esercizi di Fisica, Zanichelli (Bologna, 1970) che contiene i testi e le relative soluzioni, indicati dal loro numero e pagina

Dettagli

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2)

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2) 1 Esercizio (tratto dal Problema.8 del Mazzoldi ) Una particella si muove lungo una circonferenza di raggio R 50 cm. Inizialmente parte dalla posizione A (θ 0) con velocità angolare nulla e si muove di

Dettagli

III esperimento: determinazione del momento d inerzia

III esperimento: determinazione del momento d inerzia III esperimento: determinazione del momento d inerzia Consideriamo un corpo esteso (vedi figura seguente) che possa ruotare attorno ad un asse fisso passante per il punto di sospensione PS; si immagini

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Tempi Moduli Unità /Segmenti. 2.1 La conservazione dell energia meccanica

Tempi Moduli Unità /Segmenti. 2.1 La conservazione dell energia meccanica PERCORSO FORMATIVO DEL 3 ANNO - CLASSE 3 A L LSSA A. S. 2015/2016 Tempi Moduli Unità /Segmenti MODULO 0: Ripasso e consolidamento di argomenti del biennio MODULO 1: Il moto dei corpi e le forze. (Seconda

Dettagli

Soluzioni della prova scritta di Fisica Generale

Soluzioni della prova scritta di Fisica Generale Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 1 Febbraio 2011 Parte 1 Esercizio 1 Un punto parte dall origine dell asse x con velocità v 0 positiva. Il punto viaggia

Dettagli

Equilibrio statico sul piano inclinato

Equilibrio statico sul piano inclinato Esperienza 3 Equilibrio statico sul piano inclinato Obiettivi - Comprendere la differenza tra grandezze vettoriali e grandezze scalari attraverso lo studio delle condizioni di equilibrio statico di un

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

1. la velocità angolare del sistema nell istante successivo all urto; 2. l impulso della reazione vincolare;

1. la velocità angolare del sistema nell istante successivo all urto; 2. l impulso della reazione vincolare; 1 Esercizio (tratto dall esempio 6.22 p.189 del Mazzoldi) Un disco di massa M e raggio R ruota con velocità angolare ω in un piano orizzontale attorno ad un asse verticale passante per il centro. Da un

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Lezione 4 Energia potenziale e conservazione dell energia

Lezione 4 Energia potenziale e conservazione dell energia Lezione 4 Energia potenziale e conservazione dell energia 4. Energia potenziale e conservazione dell energia Energia potenziale di: Forza peso sulla superficie terrestre Serway, Cap 7 U = mgh di un corpo

Dettagli

LE CAUSE DEL MOTO 1. I PRINCIPI DELLA DINAMICA. La dinamica. Il primo principio della dinamica (o principio di inerzia)

LE CAUSE DEL MOTO 1. I PRINCIPI DELLA DINAMICA. La dinamica. Il primo principio della dinamica (o principio di inerzia) LE CAUSE DEL MOTO 1. I PRINCIPI DELLA DINAMICA La dinamica La dinamica è la parte della fisica che studia come si muovono i corpi per effetto delle forze che agiscono su di essi. I principi della dinamica.

Dettagli

Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb

Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb Problemi di isica Elettromagnetismo La arica Elettrica e la Legge di oulomb Data la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta nell origine

Dettagli

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1 7 Una molla ideale di costante elastica k 48 N/m, inizialmente compressa di una quantità d 5 cm rispetto alla sua posizione a riposo, spinge una massa m 75 g inizialmente ferma, su un piano orizzontale

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a [1] Un asta rigida omogenea di lunghezza l = 1.20 m e massa m = 2.5 kg reca ai due estremi due corpi puntiformi di massa pari a 0.2 kg ciascuno. Tale sistema è in rotazione in un piano orizzontale attorno

Dettagli

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA Sommario MOTO E TRAIETTORIA... 3 PUNTO MATERIALE... 3 TRAIETTORIA... 3 VELOCITÀ... 4 VELOCITÀ MEDIA... 4 VELOCITÀ ISTANTANEA...

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Compito di Fisica Generale (Meccanica) 16/01/2015

Compito di Fisica Generale (Meccanica) 16/01/2015 Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 1/13 FM1 - Fisica Matematica I Seconda Prova di Esonero [14-1-13] SOLUZIONI Esercizio 1 (a) La coordinata del centro di massa è data da X cm = 1 (x 1 + x

Dettagli