e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come"

Transcript

1 Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > 1 allora i punti si allontanano indefinitamente ( n + ), se = 1 i punti rimangono sulla circonferena unitaria ( n = 1) e infine se < 1 i punti si avvicinano all origine ( n 0). Se riprendiamo il punto dell esempio precedente e proviamo a disegnare nel piano le prime 10 potene otteniamo: 6. Radici di un numero complesso Passiamo ora all analisi del problema inverso: se conosciamo la potena n-esima di un numero complesso, come facciamo a calcolare il numero originale? Ossia dato un numero complesso quante e quali sono le soluioni w dell equaione w n =? Se = 0 la risposta è banale: l unica soluione possibile è proprio w = 0. Supponiamo quindi che 0 e iniiamo a ragionare nel caso particolare in cui = 1. Se n = l equaione da risolvere è w = 1. Se esprimiamo l incognita in forma esponeniale otteniamo: w = w e iϕ e w = w e iϕ = 1 e i0 = 1. Dato che due numeri complessi in forma esponeniale sono uguali se e solo se i loro moduli sono uguali e i loro argomenti differiscono di un multiplo di π, abbiamo che w = 1 e ϕ = 0 + kπ con k Z. Questo vuol dire che w = 1 (il modulo è un numero reale non negativo) e i possibili argomenti di w sono ϕ = 0 + kπ = kπ con k Z. Quindi l insieme delle soluioni si scrive come wk = e ikπ : k Z }. Apparentemente questo insieme contiene infiniti elementi che dipendono dal parametro k Z. Se però esaminiamo gli elementi con più attenione ci accorgiamo che e ikπ = 1 se k è pari e e ikπ = 1 se k è dispari

2 10 Roberto Tauraso - Analisi ossia wk = e ikπ : k Z } = w k = e ikπ : k = 0, 1 } = 1, 1}. Così le soluioni sono esattamente e sono quelle che potevamo determinare già nell ambito dei numeri reali: w 0 = 1 e w 1 = 1. Proviamo ora a vedere cosa succede per n = 3. L equaione da risolvere è w 3 = 1 e se ripercorriamo i passaggi del caso precedente otteniamo: che equivale a w 3 = w 3 e i3ϕ = 1, w = 1 e ϕ = kπ con k Z. 3 e l insieme delle soluioni, dopo le analoghe riduioni del caso n =, si scrive come } } } w k = e ikπ 3 : k Z = w k = e ikπ 3 : k = 0, 1, = 1, e iπ 3, e i 4π 3. Dunque le soluioni sono esattamente 3: oltre a quella che ci aspettavamo dal caso reale, w 0 = 1, abbiamo ottenuto anche w 1 = e i π 3 e w = e i4π 3. Riportando i punti nel piano possiamo notare che queste soluioni stanno tutte sulla circonferena unitaria e individuano i vertici di un triangolo equilatero. w 1 w 0 w Ora dovrebbe essere chiaro cosa si ottiene per = 1 quando n è un intero positivo qualunque: le soluioni dell equaione w n = 1 sono n e precisamente } w k = e ikπ n : k = 0, 1,, 3,..., n 1 = } 1, e iπ n, e i 4π n,...,e i (n 1)π n. Nel piano questi numeri, dette radici n-esime dell unità, sono disposti ai vertici di un poligono regolare di n lati inscritto nella circonferena unitaria e con un vertice in 1.

3 Numeri complessi 11 Esempio 6.1 Calcoliamo le radici quarte dell unità. Risolvendo l equaione w 4 = 1 otteniamo } } w k = e ikπ 4 : k = 0, 1,, 3 = 1, e i π, e iπ, e i3π = 1, i, 1, i}. w 1 w w 0 w 3 Il caso più generale, quando è un generico numero complesso diverso da ero, si affronta nello stesso modo e la conclusione è la seguente: Radici n-esime Se = e iθ 0 allora l insieme delle soluioni dell equaione w n = è costituito da n numeri distinti dette radici n-esime di : w k = n e i( } θ n +kπ n ) : k = 0, 1,,..., n 1. Nel piano i punti corrispondenti a ogni w k sono disposti ai vertici di un poligono regolare di n lati inscritto nella circonferena di raggio n centrata in 0 e con un vertice in e i θ n. Esempio 6. Risolviamo l equaione w = 1. Si tratta di determinare le due radici quadrate del numero = 1 = e iπ : w k = e i( π +kπ) } : k = 0, 1 = i, i}. In questo caso, il poligono regolare è costituito dai due punti opposti i e i.

4 1 Roberto Tauraso - Analisi Esempio 6.3 Calcoliamo le radici quinte di = i = e i π : w k = 5 e i( π 10 +kπ 5 ) : k = 0, 1,, 3, 4 }. i w 0 = 5 e i π 10 Quindi otteniamo un pentagono regolare inscritto nella circonferena di raggio 5 centrata in 0. L argomento del vertice w 0 è π ossia 1 dell argomento di i che è 10 5 uguale a π. Esempio 6.4 Calcoliamo l area del poligono di vertici C : 4 = 4 } 5(1 + i). I vertici sono le radici quarte del numero 4 5(1 + i) e quindi, per quanto detto, individuano un quadrato centrato nell origine Per calcolare l area di questo quadrato è necessario sapere solo il raggio r della circonferena circoscritta ovvero il modulo delle radici: r = ( i ) 1/4 = ( ) 1/4 = (0) 1/4.

5 Numeri complessi 13 Quindi sapendo che il lato del quadrato è r, l area è uguale a ( r) = r = (0) 1/ = 4 5. Esempio 6.5 Calcoliamo il limite lim n p n, dove p n è il perimetro del poligono di vertici C : n = 4 n}. L equaione n = 4 n = n individua i vertici di un poligono regolare di n lati inscritto nella circonferena centrata in 0 e di raggio. Al crescere di n, il numero di lati aumenta e e la successione di poligoni tende alla circonferena in cui sono iscritto. Quindi il limite della successione dei loro perimetri è la lunghea di tale circonferena ossia 4π. 7. Equaione di secondo grado in C In quest ultima parte vogliamo discutere la risoluione di una generica equaione di secondo grado a + b + c = 0. quando i coefficienti a, b, c C (a 0). Si può verificare che la formula per determinare le soluioni nel caso reale è ancora valida nel caso complesso 1, = b ±, a dove il simbolo ± rappresenta le due radici quadrate del numero complesso = b 4ac. Quindi, a differena del caso reale, un equaione di secondo grado in C ammette sempre due soluioni (eventualmente coincidenti). Esempio 7.1 Risolviamo l equaione i = 0: in questo caso Le due radici quadrate di i sono Quindi = b 4ac = ( 4) 4(4 1 i) = i. w 1 = e i π 4 = 1 + i e w = e i5π 4 = 1 i = w1. 1 = b + w 1 = i = 5 a + 1 i e = b w 1 = 4 1 i = 3 a 1 i. Provate a ottenere lo stesso risultato dopo aver osservato che l equaione data può essere riscritta nel seguente modo: ( ) = 1 i.

6 14 Roberto Tauraso - Analisi La situaione descritta per un equaione polinomiale di grado si generalia al caso di un equaione polinomiale di grado n: Teorema fondamentale dell algebra Sia P() = a n n + + a 1 + a 0 un polinomio di grado n > 0 a coefficienti in C. Allora l equaione P() = 0 ha n soluioni complesse 1,,, n (tenendo conto delle molteplicità) e inoltre Esempio 7. Risolviamo l equaione P() = a n ( 1 ) ( ) ( n ). P() = 4 + (1 i) i = 0 e poi fattoriiamo il polinomio P(). Poniamo w = : w + (1 i)w i = 0. In questo caso = (1 i) +8i = 3+4i = 5e iθ. Possiamo determinare le due radici quadrate di sena determinare θ [0, π): il numero x + iy è una radice quadrata di 3 + 4i se e solo se (x + iy) = 3 + 4i ossia se x y = 3 e xy = 4. Quindi si ricava facilmente che y = /x e risolvendo l equaione x (/x) = 3 si ottiene che x = 1 (le soluioni corrispondenti a x = 4 si scartano in quanto x è un numero reale!) ossia x = ±1. Così le radici quadrate di sono 1 + i e 1 i e le soluioni cercate sono w 1 = 1 e w = i. Dunque w + (1 i)w i = (w ( 1)) (w i) = ( + 1) ( i) = 0. Ora basta risolvere le equaioni che si ottengono uguagliando a ero i singoli fattori: = 1 e = i. Quindi le 4 soluioni dell equaione data sono: 1 = i, = i e 3 = 1 + i, 4 = 1 i Inoltre, il polinomio dato può essere fattoriato nel seguente modo P() = 4 + (1 i) i = ( i) ( + i) ( 1 i) ( i).

7 Numeri complessi 15 Esempio 7.3 Determiniamo il numero di soluioni distinte dell equaione P() = ( 4 1) ( 3 1) = 0. Il polinomio P() ha grado 4 +3 = 11 quindi per il teorema fondamentale dell algebra ci aspettiamo 11 soluioni (non necessariamente distinte). Il fattore ( 4 1) ha quattro eri distinti ciascuno con molteplicità : 1, i, 1, i. Il fattore ( 3 1) ha tre eri distinti ciascuno con molteplicità 1: 1, ( 1 + i 3)/, ( 1 i 3)/. Quindi l insieme delle soluioni dell equaione P() = 0 è: e il numero dei suoi elementi è 6. 1, i, 1, i, ( 1 + i 3)/, ( 1 i } 3)/ Esempio 7.4 Data l equaione P() = = 0 e sapendo che 1 = 1 è una delle soluioni, determinamo le soluioni rimanenti. Dato che P( 1) = 0 allora il polinomio P() è divisibile per + 1. Si verifica che il quoiente della divisione è Q() = e quindi le soluioni rimanenti di P() = 0 sono gli eri del polinomio Q() ossia = 3 + i e 3 = 3 i. Esempio 7.5 Determiniamo il perimetro e l area del poligono i cui vertici soddisfano l equaione P() = ( + 10) ( ) = 0. Le soluioni del polinomio di quarto grado P() sono ottenute risolvendo i due fattori di secondo grado: 1 = 1 + 3i, = 1 3i e 3 = 3 + i, 4 = 3 i. Le due coppie di numeri complessi coniugati individuano i vertici di un trapeio:

8 16 Roberto Tauraso - Analisi Calcoliamo le lunghee dei lati 1 = 6i = 6, 1 3 = 4 = + i = 5, 3 4 = 4i = 4 quindi il perimetro è L area invece è uguale a 1 ( ) Re( 3 1 ) = 1 (6 + 4) 3 1 = 10.

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano

Dettagli

Numeri complessi. x 2 = 1.

Numeri complessi. x 2 = 1. 1 Numeri complessi Nel corso dello studio della matematica si assiste ad una progressiva estensione del concetto di numero. Dall insieme degli interi naturali N si passa a quello degli interi relativi

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

unità immaginaria, rappresentata dal simbolo i e che si definisce comeunnumeroilcuiquadratoèugualealnumeroreale 1, ossia:

unità immaginaria, rappresentata dal simbolo i e che si definisce comeunnumeroilcuiquadratoèugualealnumeroreale 1, ossia: I NUMERI COMPLESSI Perché i numeri complessi? Perché i numeri complessi? Risolviamo l equaione di Risolviamo l equaione di grado:. grado:. 0 3 + x x? 8 1 4 ± ± x? x unità immaginaria, rappresentata dal

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

Esercizi sui numeri complessi. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. 1. Trovare parte reale e immaginaria dei numeri complessi:

Esercizi sui numeri complessi. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. 1. Trovare parte reale e immaginaria dei numeri complessi: Esercizi sui numeri complessi Corso di Laurea in Informatica A.A. Docente: Andrea Loi Correzione 1 Esercitazione 1. Trovare parte reale e immaginaria dei numeri complessi: 3 + i 5 4i e Soluzione: 3 + i

Dettagli

Numeri Complessi. Perché i numeri complessi? PSfrag replacements

Numeri Complessi. Perché i numeri complessi? PSfrag replacements Numeri Complessi Sono numeri del tipo = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i = 1 3 + 3i i i L insieme dei numeri complessi è indicato con C. a è detta parte reale del numero

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

NUMERI COMPLESSI. I numeri complessi

NUMERI COMPLESSI. I numeri complessi NATURALI INTERI RAZIONALI REALI IRRAZIONALI COMPLESSI NUMERI COMPLESSI Definiione Rappresentaione Forma trig. ed esp. Operaioni Addiione Coniugio Moltiplicaione Potena n-esima Reciproco Diisione Radice

Dettagli

Complementi di algebra

Complementi di algebra Complementi di algebra Equazioni di grado superiore al secondo Come per le equazioni di grado, esistono formule risolutive anche per le equazioni di e grado ma non le studieremo perché sono troppo complesse,mentre

Dettagli

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Numeri complessi Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Introduzione I numeri complessi vengono introdotti perché tutte

Dettagli

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Numeri complessi Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) I numeri complessi Analisi Matematica 1 1 / 34 Introduzione L introduzione dei numeri complessi

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE. Esercizi Esercizio. Scrivere la forma algebrica, la forma trigonometrica e quella esponenziale dei seguenti numeri complessi: z = + i, z = (cos( π ) + i sin(π

Dettagli

I numeri complessi. Richiami di teoria. AMA Ing.Edile - Prof. Colombo 1. Esercitazioni: Francesco Di Plinio -

I numeri complessi. Richiami di teoria. AMA Ing.Edile - Prof. Colombo 1. Esercitazioni: Francesco Di Plinio - AMA Ing.Edile - Prof. Colombo 1 Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it I numeri complessi. Richiami di teoria. 1.1 Numeri complessi. Un numero complesso è un espressione della

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. 1 Dom Es. 1 Es. Es. 3 Es. 4 Totale Analisi e Geometria 1 Primo appello 16 febbraio 016 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola:

Dettagli

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7.

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7. NUMERI COMPLESSI Esercizi svolti. 1 Calcolare la parte reale e la parte immaginaria di z = i i. Determinare il valore assoluto e il coniugato di az = 1 + i 6 e bw = i 17. Scrivere in forma cartesiana i

Dettagli

Numeri Complessi. Sono numeri del tipo z = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i 2 = 1

Numeri Complessi. Sono numeri del tipo z = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i 2 = 1 Numeri Complessi Sono numeri del tipo z = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i 2 = 1 L insieme dei numeri complessi è indicato con C. a è detta parte reale del numero complesso

Dettagli

I Compendi OpenSource di Giacomo Marciani Analisi Matematica Teoria, Formulario e Suggerimenti Pratici dalle dispense del professor Roberto Tauraso 1

I Compendi OpenSource di Giacomo Marciani Analisi Matematica Teoria, Formulario e Suggerimenti Pratici dalle dispense del professor Roberto Tauraso 1 I Compendi OpenSource di Giacomo Marciani Analisi Matematica Teoria, Formulario e Suggerimenti Pratici dalle dispense del professor Roberto Tauraso Numeri complessi Nel corso dello studio della matematica

Dettagli

ESERCITAZIONE 4: I NUMERI COMPLESSI

ESERCITAZIONE 4: I NUMERI COMPLESSI ESERCITAZIONE 4: I NUMERI COMPLESSI Tiziana Raparelli 19/0/008 1 DEFINIZIONI E PROPRIETÀ Vogliamo risolvere l equazione x + 1 = 0, estendiamo dunque l insieme dei numeri reali, introducendo l unità immaginaria

Dettagli

0.1 Numeri complessi C

0.1 Numeri complessi C 0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni

Dettagli

Esponenziale complesso

Esponenziale complesso Esponenziale complesso Paola Rubbioni Analisi Matematica II - CdL in Ingegneria Informatica ed Elettronica a.a. 2016/2017 1 Serie nel campo complesso Per fornire il concetto di serie nel campo complesso

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Introduzione ai numeri complessi. Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16

Introduzione ai numeri complessi. Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16 Introduzione ai numeri complessi Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16 Definizione (Campo complesso C. Prima definizione.) Il campo complesso C è costituito da tutte le espressioni

Dettagli

Esercitazione sui numeri complessi

Esercitazione sui numeri complessi . Esponeniali e logaritmi. Sviluppi in serie di potene 3. Singolarità e residui 4. Integrali su circuiti semplici. Esponeniali e logaritmi Esercitaione sui numeri complessi February 7, 03 Eserciio. Calcolare

Dettagli

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni

Dettagli

I numeri complessi. Capitolo 7

I numeri complessi. Capitolo 7 Capitolo 7 I numeri complessi Come abbiamo fatto per i numeri reali possiamo definire assiomaticamente anche i numeri complessi. Diciamo che l insieme C dei numeri complessi è un insieme su cui sono definite

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

Sol. Sia P = (x, y) un punto che soddisfa l equazione Y 2 = X 3 + ax + b. Ricordiamo che per definizione P = (x, y) è un punto regolare di E se

Sol. Sia P = (x, y) un punto che soddisfa l equazione Y 2 = X 3 + ax + b. Ricordiamo che per definizione P = (x, y) è un punto regolare di E se Teoria Elementare dei Numeri. Soluzioni Esercizi 5. Curve ellittiche. 1. Sia E una curva su R di equazione Y 2 = X 3 + ax + b. Verificare che è una curva regolare di R 2 (senza punti singolari) se e solo

Dettagli

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h. LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente

Dettagli

(a, b) + (c, d) = (a + c, b + d) (1) (a, b) + (0, 0) = (a + 0, b + 0) = (a, b) (a, b) + ( a, b) = (a a, b b) = (0, 0)

(a, b) + (c, d) = (a + c, b + d) (1) (a, b) + (0, 0) = (a + 0, b + 0) = (a, b) (a, b) + ( a, b) = (a a, b b) = (0, 0) Numeri Complessi I numeri complessi sono un'estensione dei numeri reali, vengono introdotti anchè tutte le equazioni algebriche ammettano soluzioni. Dato l'insieme R = R R = { (a, b) R R } deniamo per

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2007 2008 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Fondamenti di ALGEBRA LINEARE E GEOMETRIA

Fondamenti di ALGEBRA LINEARE E GEOMETRIA Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 7 Capitolo

Dettagli

Algebra Lineare Ingegneria Chimica Anno Accademico 2018/19

Algebra Lineare Ingegneria Chimica Anno Accademico 2018/19 Algebra Lineare Ingegneria Chimica Anno Accademico 2018/19 Caboara Lezione 1 ottobre 2018 Esercizio 1 Disegnare nel piano di Gauss z C z < 2} L interno della circonfernza di centro l origine e raggio 2,

Dettagli

Unità Didattica N 12 Le equazioni ad una incognita 1. Unità Didattica N 12 Le equazioni ad una incognita

Unità Didattica N 12 Le equazioni ad una incognita 1. Unità Didattica N 12 Le equazioni ad una incognita Unità Didattica N Le equazioni ad una incognita Unità Didattica N Le equazioni ad una incognita ) Equazioni risolubili mediante la decomposizione in fattori ) Equazione biquadratica ) Equazioni irrazionali

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

NUMERI COMPLESSI. Test di autovalutazione

NUMERI COMPLESSI. Test di autovalutazione NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso

Dettagli

Esercizi - 1 Numeri Complessi

Esercizi - 1 Numeri Complessi Esercizi - 1 Numeri Complessi Ricordiamo che l insieme delle coppie reali f( ) : Rg che indichiamo con R, con le seguenti operazioni: Addizione: ( )+( ) =( + + ) Prodotto per uno scalare: ( ) =( ) R risulta

Dettagli

2. FUNZIONI REALI DI n VARIABILI REALI

2. FUNZIONI REALI DI n VARIABILI REALI FUNZIONI REALI DI n VARIABILI REALI Determinaione del dominio Y Sia D un sottoinsieme dell insieme R R indicato anche con R Graficamente possiamo pensare a D come ad una ona del piano cartesiano secondo

Dettagli

Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 3 settembre 2009 Tema A

Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 3 settembre 2009 Tema A Università degli Studi di Bergamo Corso integrato di Analisi (Geometria e Algebra Lineare) settembre 009 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali. Matematica e Fisica

Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali. Matematica e Fisica Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali Test d INGRESSO Matematica e Fisica 2017-2018 A 1. In un parallelogramma due lati consecutivi sono lunghi a e b e l angolo tra essi

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini

Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini Divisione di polinomi, teorema del resto e teorema di Ruffini Teorema (della divisione con resto tra due polinomi in una variabile). Dati due polinomi A x e B x, con B x 0, esistono sempre, e sono unici,

Dettagli

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi.

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi. LeLing14: Ancora numeri complessi e polinomi Ārgomenti svolti: Risoluzione di ax + bx + c = 0 quando a, b, c sono numeri complessi La equazione di Eulero: e i θ = cos(θ) + i sin(θ) La equazione x n = a,

Dettagli

1 n 1. n + 1. n=1 N+1. n=1. n=1 N N + 1.

1 n 1. n + 1. n=1 N+1. n=1. n=1 N N + 1. 44 Roberto Tauraso - Analisi 2 e quindi la somma parziale s N è uguale a N N s N n(n + ( n n + n N n n N+ n n N +. n2 N n N n n + dove nell ultimo passaggio si sono annullati tutti i termini opposti tranne

Dettagli

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 2018 Parte B Tema B1

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 2018 Parte B Tema B1 Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 08 Parte B Tema B Tempo a disposizione: due ore. Calcolatrici, libri e appunti non sono ammessi.

Dettagli

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare: 42 Roberto Tauraso - Analisi 2 Ora imponiamo condizione richiesta: ( lim c e 4x + c 2 + c 3 e 2x cos(2x) + c 4 e 2x sin(2x) ) = 3. x + Il limite esiste se e solo c 3 = c 4 = perché le funzioni e 2x cos(2x)

Dettagli

I Numeri complessi - Motivazioni

I Numeri complessi - Motivazioni I Numeri complessi - Motivazioni In Telecomunicazioni Elettronica Informatica Teoria dei segnali... si studiano i segnali, cioè delle grandezze fisiche dipendenti dal tempo, matematicamente esprimibili

Dettagli

UNITÀ 2 EQUAZIONI E SISTEMI DI SECONDO GRADO

UNITÀ 2 EQUAZIONI E SISTEMI DI SECONDO GRADO UNITÀ EQUAZIONI E SISTEMI DI SECONDO GRADO. I numeri reali.. I radicali.. Le operaioni con i radicali.. Le equaioni di secondo grado pure, spurie e complete.. Sistemi di secondo grado con due equaioni

Dettagli

Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 26 gennaio 2011 Tema A

Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 26 gennaio 2011 Tema A Università degli Studi di Bergamo Corso integrato di Analisi (Geometria e Algebra Lineare) 6 gennaio Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va

Dettagli

Esercitazione N.2. Sistemi lineari con parametro. di sistemi lineari con parametro. La regola di Cramer Discussione e risoluzione

Esercitazione N.2. Sistemi lineari con parametro. di sistemi lineari con parametro. La regola di Cramer Discussione e risoluzione Esercitaione N. maro 7 Sistemi lineari con parametro La regola di Cramer Discussione e risoluione di sistemi lineari con parametro sistemi lineari omogenei Rosalba Barattero ESERCIZIO. Sistema di Cramer

Dettagli

1 Il polinomio Px ()= x 2 + ax + b ha discriminante negativo. Segue che. Un angolo di π radianti, trasformato in gradi, vale

1 Il polinomio Px ()= x 2 + ax + b ha discriminante negativo. Segue che. Un angolo di π radianti, trasformato in gradi, vale 1 Il polinomio Px ()= x 2 + ax + b ha discriminante negativo. Segue che a) Px ()> 0 per ogni valore di x b) Px () ha una radice doppia c) il coefficiente b è negativo d) la curva di equazione y = Px ()

Dettagli

Osservazioni generali

Osservazioni generali Osservazioni generali Innanzitutto Non si può dividere per. Per i numeri complessi Quando si risolve z 3 = az con a dato, ricordarsi di stare attento per che cosa si divide. Infatti non si può dividere

Dettagli

ALGEBRA I: SOLUZIONI TERZA ESERCITAZIONE 11 aprile 2011

ALGEBRA I: SOLUZIONI TERZA ESERCITAZIONE 11 aprile 2011 ALGEBRA I: SOLUZIONI TERZA ESERCITAZIONE 11 aprile 2011 Esercizio 1. Siano m e n due numeri interi positivi tali che m + n è un numero primo. Mostrare che m e n sono coprimi. Soluzione. Sia d = (m, n)

Dettagli

29. Numeri complessi

29. Numeri complessi ANALISI Argomenti della Lezione 9. Numeri complessi 11 gennaio 01 9.1. L insieme C. L insieme C dei numeri complessi é l insieme delle coppie ordinate di numeri reali C = R R La tradizione vuole che la

Dettagli

Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11)

Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11) Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11) 1. Disegnare sul piano di Argand-Gauss e porre in forma trigonometrica-esponenziale (i.e. determinarne modulo

Dettagli

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000 Quesiti della seconda prova scritta per Matematica Problema 1. (i) Dire quante e quali sono le coppie ordinate (x, y) di numeri naturali che sono soluzioni del sistema { MCD(x, y) = 10 xy = 30000 Qui MCD(x,

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Sistemi di primo grado

Sistemi di primo grado Sistemi di primo grado Consideriamo il seguente problema: Determina due numeri la cui somma è e la cui differena è. Possiamo risolvere questo problema utiliando due incognite per indicare i due numeri

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1 46 Roberto Tauraso - Analisi 2 Esempio 3.6 Determinare il carattere della serie Applichiamo il criterio del rapporto: n n. a n+ a n (n +! nn (n + nn (n + n+ (n + n n n+ (n + ( n + n e. n Dato che e

Dettagli

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180 L approssimazione di π secondo al-kashi Al-Kashi calcola il π in modo tale che soddisfi una condizione, detta Condizione di Al-Kashi : La circonferenza di un cerchio deve essere espressa in funzione del

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione C

II Esonero di Matematica Discreta - a.a. 06/07. Versione C II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione C a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5612 e la scrittura

Dettagli

Esercitazione su equazioni, disequazioni e trigonometria

Esercitazione su equazioni, disequazioni e trigonometria Esercitazione su equazioni, disequazioni e trigonometria Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 6 Ottobre 20. Come tali sono ben lungi dall essere esenti da errori,

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

di 4, che è l area dell intera mattonella, imponiamo che 5 e quindi a = 7 5

di 4, che è l area dell intera mattonella, imponiamo che 5 e quindi a = 7 5 Problemi Problema 1) 1) Siccome la funzione f(x) è una retta, l espressione cercata è f(x) = 1 x che soddisfa le condizioni a), b) e c) richieste. Per riflessione rispetto all asse y, all asse x e all

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione B

II Esonero di Matematica Discreta - a.a. 06/07. Versione B II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Soluzioni settima gara Suole di Gauss

Soluzioni settima gara Suole di Gauss Soluzioni settima gara Suole di Gauss Marzo 09. Risposta: 009 Osserviamo che i numeri di 3 cifre composti da, 6 e 7 sono 3! = 6. Adesso dobbiamo creare coppie di questi 6 numeri, tendendo di conto dell

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - LUGLIO 9 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati: la correttea del risultato ottenuto e della procedura utiliata; la

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 luglio 2014 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 luglio 2014 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 luglio 24 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) NUMERI COMPLESSI E EQUAZIONI

ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) NUMERI COMPLESSI E EQUAZIONI ISTITUZIONI DI MATEMATICA I (prof. M.P.Cavaliere) NUMERI COMPLESSI E EQUAZIONI I numeri complessi Anche se il campo reale è sufficientemente ricco per la maggior parte delle applicazioni, tuttavia le equazioni

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Numeri complessi. Scrivere in forma algebrica i seguenti numeri complessi. a) z + i) i) + i) i) b) z + i) i) + i) + + i) i) + i) + i) c) z

Dettagli

22 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

22 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Esercizi svolti sulle applicazioni lineari

Esercizi svolti sulle applicazioni lineari Francesco Daddi - dicembre Esercii svolti sulle applicaioni lineari Eserciio. Si consideri la trasformaione lineare T : R R che ha come matrice associata, rispetto alla base β = {,, ) T ;,, ) T ;,, ) T}

Dettagli

C. Di Stefano, Dal problema al modello matematico Vol 1 Capitolo 4 Unità 2

C. Di Stefano, Dal problema al modello matematico Vol 1 Capitolo 4 Unità 2 Verifiche Con il simbolo CAS indichiamo quegli esercizi per i quali risulta opportuno utilizzare nei calcoli un software di tipo Computer Algebra System, come Derive o una calcolatrice simbolica. Vogliamo

Dettagli

[FE] Funzioni elementari

[FE] Funzioni elementari [FE] Funzioni elementari 1 Problema. Trovare tutte le soluzioni dell equazione sin z =. Disegnare accuratamente sul piano complesso le soluzioni che si trovano all interno del rettangolo di vertici: (

Dettagli

e non ci possono chiaramente essere minori di ordine più grande per cui il rango per minori è 2. Rango per pivot: Svolgiamo la riduzione

e non ci possono chiaramente essere minori di ordine più grande per cui il rango per minori è 2. Rango per pivot: Svolgiamo la riduzione 18 ottobre 2011 1. Per le matrici seguenti calcolare il rango per minori, il rango per pivot, il rango per righe ed il rango per colonne. Verificare che si ottiene sempre lo stesso numero. Determinare

Dettagli

k l equazione diventa 2 x + 1 = 0 e ha unica soluzione

k l equazione diventa 2 x + 1 = 0 e ha unica soluzione a B 3 Compito del Q 8 maggio 009 A) Equazioni con parametro. Data l equazione ( k + k ) + k + 0 determinare il valore di k in ciascuno dei seguenti casi. L equazione si abbassa di grado (risolvere l equazione

Dettagli

Appunti di Algebra Lineare - 1

Appunti di Algebra Lineare - 1 Appunti di Algebra Lineare - 1 Mongodi Samuele - s.mongodi@sns.it 10/11/2009 Le note che seguono non vogliono, né possono, essere il sostituto delle lezioni frontali di teoria e di esercitazione; anzi,

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P(

( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P( ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] + + + ( ) Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio

Dettagli

Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009

Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009 Capitolo Ingegneria Meccanica; Algebra lineare e Geometria 8/9. Esercii svolti su rette e piani Eserciio. Stabilire se le due rette r e s sono coincidenti oppure no: ( ( ( ( ( ( 7 r : = + t ; s : = + t

Dettagli

Insiemi numerici: i numeri complessi

Insiemi numerici: i numeri complessi Insiemi numerici: i numeri complessi Riccarda Rossi Università di Brescia Analisi I Introduzione Storicamente: I si è passati da N a Z perché la sottrazione di due numeri naturali non è operazione interna

Dettagli

Esercizi risolti di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Esercizi risolti di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Esercizi risolti di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio Quest opera è stata rilasciata con licenza Creative Commons Attribuzione - Non commerciale- Non opere derivate 3.0

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 MATTEO LONGO Svolgere entrambe le parti (Teoria ed Esercizi Si richiede la sufficienza su entrambe le parti 1

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Massimi e minimi relativi in R n

Massimi e minimi relativi in R n Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado Una disequazione di secondo grado è una disequazione del tipo (oppure a b c o a b c ) a b c oppure a b c I) Cominciamo considerando disequazioni in cui a Esempio Consideriamo

Dettagli

Dunque l equazione ammette le soluzioni:

Dunque l equazione ammette le soluzioni: Risolubilità delle equazioni algebriche in campo complesso Es.1 (tema d esame 10 gennaio 2013). Determinare le soluzioni dell equazione algebrica (z 3 + 2 3 i)(z 2 2iz) = 0. È un equazione algebrica di

Dettagli