( ) ( ) ESEMPI. lim. Attribuendo ad x dei valori minori di x 0 (ad es. 0,999,...,0,5) si nota che la

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "( ) ( ) ESEMPI. lim. Attribuendo ad x dei valori minori di x 0 (ad es. 0,999,...,0,5) si nota che la"

Transcript

1 . Limiti di una funzione LIMITI DI UNA FUNZIONE Per ottenere un informazione competa su di una funzione occorrerebbe cacoare tutti i vaori dea funzione per ogni vaore di, ma ciò è impossibie perché tai vaori sono infiniti. E invece possibie studiare i comportamento dea funzione nee vicinanze di un punto (punto di accumuazione) appartenente o no a dominio dea funzione. Dunque bisogna scoprire i vaore a cui tende a funzione quando a tende a. ESEMPI 1. y ( 1) = D = { R / 1} Poiché i punto =1 è un punto di accumuazione de dominio, è possibie studiare i comportamento dea funzione nei punti che si addensano intorno a. Vogiamo quindi conoscere i vaore (finito o infinito) a cui tende a funzione quando tende a sia da sinistra sia da destra. Attribuendo ad dei vaori maggiori di (ad es. 1,5,...,1,1) si nota che a funzione tende a + e quindi possiamo scrivere: im = ( ) Attribuendo ad dei vaori minori di (ad es.,999,...,,5) si nota che a funzione tende a + e quindi possiamo scrivere: im = ( ) Poiché i imite sinistro e queo destro sono uguai, si può concudere che im ( ) 1 1 = +. y = D = { R / 1} im = y = tg() π D = R/ π e im tg() = + π e im tg() = im tg() = π + π - LEZIONI DI ANALISI MATEMATICA - pag. 1

2 . Limiti di una funzione LIMITE FINITO PER UNA FUNZIONE IN UN PUNTO Si dice che R è i imite dea funzione y = f(), per tendente a R e si scrive im f() = se per ogni intorno J() di centro esiste un intorno I( ) di centro tae che: I( ) D f() J( ( ( { }) ) ) y y y J() J() f() O O O Dire che attribuendo ad vaori sufficientemente vicini a (ma non coincidenti con ) i corrispondenti vaori di f() risutano sufficientemente vicini ad un numero vuo dire che fissato un numero reae ε >, piccoo a piacere, raggio de intorno J(), è possibie trovare un numero reae δ >, raggio de intorno I( ) tae che per ogni D - { } risuta f() < ε ESEMPIO Data a funzione: y =, appichiamo a definizione di imite per dimostrare che im =, R {} Procedimento: I( ) J() ( ) D { }/ I( ) f() J( ) I 1. Si fissa un quaunque intorno J de punto = di raggio un numero reae positivo ε, piccoo a piacere: J, ε = {y R/ y < ε} = {y R/ - ε < y < + ε}. Si deve dimostrare esistenza di un intorno I di =, associato a precedente intorno e avente ampiezza δ (dipendente da ε), tae che tutti i - LEZIONI DI ANALISI MATEMATICA - pag.

3 . Limiti di una funzione suoi punti ( ) abbiano a corrispondente immagine f() che cade ne intorno J di : f() J, - ε < f() < + ε ovvero f() < ε In pratica: Fissato un numero ε >, si deve risovere a disequazione < ε Poiché; ( 3 6)( ) = = = = 3 6 ε ε Si ha 3 6 < ε da cui si ricava < < Quindi a disequazione (1) è soddisfatta da tutti i vaori interni a intervao I di ε ε estremi e +, escuso i numero. 3 3 I (1) ε ε + L intervao I costituisce un intorno competo de numero e a sua ampiezza 1 1 dipende da ε che noi abbiamo fissato piccoo a piacere (ad es.,, ) 1 1 Quindi, per quanto piccoo sia ε a disequazione (1) ammette sempre souzioni e queste formano intorno competo I ε, Concusione: Per quanto piccoo sia ε> I() / ( I() { } ) < ε D f() J() ovvero Si dice che R è i imite dea funzione y = f(), per tendente a R e si scrive im f() = se, comunque si fissi un numero reae ε >, è sempre possibie trovare, in sua corrispondenza, un numero reae δ > tae che D - - < δ f() < { } ε - LEZIONI DI ANALISI MATEMATICA - pag. 3

4 . Limiti di una funzione LIMITE INFINITO PER UNA FUNZIONE IN UN PUNTO Può verificarsi che attribuendo a vaori sufficientemente vicini a, i corrispondenti vaori di f() risutino, in vaore assouto, sempre più grandi. Più precisamente: Si dice che a funzione y=f() tende ad infinito per tendente a R e si scrive im f() = se per ogni intorno de infinito J esiste un intorno I( ) di centro tae che: I( ) D f() J ( ( { }) ) Si dice che a funzione y=f() tende ad infinito per tendente a R e si scrive im f() = quando, fissato un arbitrario numero reae M >, è possibie trovare, in sua corrispondenza, un numero reae δ > tae che D - - < δ f() In pratica: { } M > Fissato un numero M >, bisogna determinare un intorno I( ), i cui raggio δ sia dipendente da M, per ogni de quae i corrispondente punto dea curva abbia un ordinata che superi, in vaore assouto i numero M. ESEMPIO 1 Data a funzione y = si appica a definizione di imite per dimostrare che 1 im =, R - { } Se, attribuendo a vaori sufficientemente vicini a, si verifica che i corrispondenti vaori di f() risutano sempre più grandi, si dirà che a funzione tende a +. - LEZIONI DI ANALISI MATEMATICA - pag.

5 . Limiti di una funzione Più precisamente: Si dice che a funzione y=f() tende a più infinito per tendente a R e si scrive im f() = + se per ogni intorno di più infinito J + esiste un intorno I( ) di centro tae che: I( ) D f() ( ( { } ) ) J + Si dice che a funzione y=f() tende a più infinito per tendente a R e si scrive im f() = + quando, fissato un arbitrario numero reae M >, è possibie trovare, in sua corrispondenza, un numero reae δ > tae che In pratica: { } - < δ f() M D - > Fissato un numero M >, bisogna determinare un intorno I( ), i cui raggio δ sia dipendente da M, per ogni de quae i corrispondente punto dea curva abbia un ordinata che superi i numero M. ESEMPIO Data a funzione y = si appica a definizione di imite per dimostrare che ( 1), im = + 1 ( 1) R - { 1} Se, attribuendo a vaori sufficientemente vicini a, si verifica che i corrispondenti vaori di f() risutano sempre più piccoi, si dirà che a funzione tende a -. - LEZIONI DI ANALISI MATEMATICA - pag. 5

6 . Limiti di una funzione Più precisamente: Si dice che a funzione y=f() tende a meno infinito per tendente a R e si scrive im f() = se per ogni intorno di meno infinito J - esiste un intorno I( ) di centro tae che: ( ( I( ) { } ) D) f() J Si dice che a funzione y=f() tende a meno infinito per tendente a R e si scrive im f() = quando, fissato un arbitrario numero reae M >, è possibie trovare, in sua corrispondenza, un numero reae δ > tae che In pratica: { } - < δ f() - M D - < Fissato un numero M >, bisogna determinare un intorno I( ), i cui raggio δ sia dipendente da M, per ogni de quae i corrispondente punto dea curva abbia un ordinata minore de numero M. ESEMPIO Data a funzione che 1 y = si appica a definizione di imite per dimostrare ( 3) 1 im 3 ( 3) =, R - { 3} Nota Se una funzione non è definita per = ed i imite per tendente a esiste ed è infinito aora i suo grafico ha per asintoto verticae a retta =. - LEZIONI DI ANALISI MATEMATICA - pag. 6

7 . Limiti di una funzione LIMITE FINITO PER X CHE TENDE ALL INFINITO Può verificarsi che, attribuendo ad vaori sempre più grandi in vaore assouto, i vaori corrispondenti dea funzione risutino sufficientemente vicini a un numero oppure, in vaore assouto, sempre più grandi. Più precisamente: Si dice che a funzione y=f(), per tendente a, ha per imite e si scrive im f() = se per ogni intorno J di esiste un intorno de infinito I( ) tae che: ( I ) f() J Si dice che a funzione y=f() tende a per tendente a e si scrive im f() = quando, fissato un arbitrario numero reae ε >, è possibie trovare, in sua corrispondenza, un numero reae N > tae che D, > N f() - < ε (1) Nota Se + (- ) a (1) è soddisfatta sotanto per > N ( < -N), N > e si scrive: im f() = e im f() = + Esempi -1 Data a funzione y= Data a funzione y= , R-{} verificare che: im = + + 3, R-{1} verificare che: im = -1 - LEZIONI DI ANALISI MATEMATICA - pag. 7

8 . Limiti di una funzione Data a funzione y= + 1, R verificare che: im = + 1 La retta y= è un asintoto orizzontae per a funzione. ) Si dice che a funzione y=f(), per tendente a, ha per imite e si scrive im f() = se per ogni intorno J di infinito esiste un intorno de infinito I( ) tae che: I f() J ( ) Si dice che a funzione y=f() tende a per tendente a e si scrive im f() = quando, fissato un arbitrario numero reae M >, è possibie trovare, in sua corrispondenza, un numero reae N > tae che D, > N f() > M (1) Nota Se per > N f() > M si dirà che esiste i im f() = + im f() = im f() = + im f() = + im f() = + im f() = im f() = im f() = Se per > N f() < M si dirà che esiste i Se per > N f() > M si dirà che esiste i Se per > N f () > M si dirà che esiste i + Se per > N f () < -M si dirà che esiste i Se per < N f () > M si dirà che esiste i Se per < N f () > M si dirà che esiste i + Se per < N f () < M si dirà che esiste i - LEZIONI DI ANALISI MATEMATICA - pag. 8

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnoogie Agrarie Corso Integrato: Matematica e Statistica Moduo: Matematica (6 CFU) (4 CFU Lezioni +2 CFU Esercitazioni) Corso di Laurea in Tutea e Gestione de territorio

Dettagli

MATEMATICA. a.a. 2014/ LIMITI (I parte): Definizione, proprietà e calcolo. Limiti di funzioni, continuità e asintoti.

MATEMATICA. a.a. 2014/ LIMITI (I parte): Definizione, proprietà e calcolo. Limiti di funzioni, continuità e asintoti. MATEMATICA a.a. 2014/15 2. LIMITI (I parte): Definizione, proprietà e calcolo. Limiti di funzioni, continuità e asintoti. Definizione Il campo di esistenza è l insieme di tutti i punti nei quali la funzione

Dettagli

LIMITI E CONTINUITA. 1. Sul concetto di limite

LIMITI E CONTINUITA. 1. Sul concetto di limite LIMITI E CONTINUITA. Su concetto di imite I concetto di imite nasce da esigenza di conoscere i comportamento di una funzione agi estremi de suo insieme di definizione D. Quaora esso sia costituito da unione

Dettagli

1 Limite finito per x che tende a un valore finito.

1 Limite finito per x che tende a un valore finito. CONCTTO DI LIMIT ite inito per che tende a un vaore inito. Si consideri a seguente unzione in un intorno de punto = escuso da dominio di esistenza: 6 : R \ R Acuni vaori numerici cacoati negi intorni destro

Dettagli

IL CALCOLO DEI LIMITI. Le operazioni sui limiti Le forme indeterminate le funzioni continue Gli asintoti Il grafico probabile di una funzione

IL CALCOLO DEI LIMITI. Le operazioni sui limiti Le forme indeterminate le funzioni continue Gli asintoti Il grafico probabile di una funzione IL CALCOLO DEI LIMITI Le operazioni sui imiti Le orme indeterminate e unzioni continue Gi asintoti I graico probabie di una unzione Pro. Giovanni Ianne Pro Giovanni Ianne 1/19 LE OPERAZIONI SUI LIMITI

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

x -x-2 =3 x 2 x-2 lim

x -x-2 =3 x 2 x-2 lim G Limiti G Introduzione Si è visto, cacoando i dominio dee funzioni, che per certi vaori dea non è possibie cacoare i vaore dea Cò che ci si propone in questo capitoo è capire come si comporta a assegnando

Dettagli

Punto di accumulazione

Punto di accumulazione Punto di accumulazione Def. Sia A R. Diciamo che x 0 R è un punto di accumulazione per A se in ogni intorno di x 0 cade almeno un replacements punto di A diverso da x 0. replacements replacements A x 0

Dettagli

Topologia della retta reale. Concetto intuitivo di limite. Definizioni di limite. Teoremi sui limiti. Applicazioni. Angela Donatiello 1

Topologia della retta reale. Concetto intuitivo di limite. Definizioni di limite. Teoremi sui limiti. Applicazioni. Angela Donatiello 1 Topologia della retta reale. Concetto intuitivo di ite. Definizioni di ite. Teoremi sui iti. Applicazioni. Angela Donatiello TOPOLOGIA DELLA RETTA REALE Esiste una corrispondenza biunivoca tra l insieme

Dettagli

Le equazioni e le disequazioni lineari

Le equazioni e le disequazioni lineari MATEMATICAperTUTTI Le equazioni e e disequazioni ineari Le equazioni ineari ESERCIZIO SVOLTO Le equazioni. Chiamiamo equazione ad una incognita un uguagianza fra due espressioni agebriche di cui ameno

Dettagli

LIMITI DI FUNZIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1

LIMITI DI FUNZIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1 LIMITI DI FUNZIONI c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1 Intorni Def. Siano 0 R e r R +. Chiamiamo intorno di centro 0 e raggio r l intervallo aperto e limitato

Dettagli

Limiti di funzioni a +

Limiti di funzioni a + Limiti di funzioni a + Consideriamo una funzione = f() reale a variabile reale, di dominio D R. Sia f definita in un intorno di +. Def. La funzione f tende al limite l R per tendente a + e si scrive se

Dettagli

1) Scrivere le espressioni lagrangiane delle energie cinetica e potenziale e usarle per scrivere le equazioni di Lagrange per il sistema.

1) Scrivere le espressioni lagrangiane delle energie cinetica e potenziale e usarle per scrivere le equazioni di Lagrange per il sistema. 7 si può discutere come quea di un pendoo sempice con punto di equiibrio stabie ϕ e α quando δ < e come quea di un pendoo inverso cioè con a gravità verso ato invece che verso i basso e punto di equiibrio

Dettagli

PROBLEMA 1 RISOLUZIONE. Punto 1

PROBLEMA 1 RISOLUZIONE. Punto 1 PROBLEMA Data una circonerenza di centro O e raggio unitario, si prendano su di essa tre punti A, B, C, tai che AB = BC.. Si cacoi, in unzione de angoo AÔB =, a quantità: AB BC CA controando che risuti:

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di aurea in Matematica - Anno Accademico 203/4 FM20 - Fisica Matematica I Secondo appeo scritto [7-2-204]. (0 punti. Si consideri i sistema ineare { ẋ = 3x + ( + αy + ẏ = αx + 2y con α R.. Si discuta

Dettagli

Matematica per le Scienze Sociali

Matematica per le Scienze Sociali atematica per le Scienze Sociali Limite Passaggio al ite Continuità della unzione 5//05 Clelia Cascella Deinizione intuitiva di ite Se () è una unzione reale, se c ed l sono dei numeri reali, dire che

Dettagli

0.1 Limiti per x tendente a un valore finito

0.1 Limiti per x tendente a un valore finito 0.1 Limiti per x tendente a un valore finito 0.1.1 Limite destro e ite sinistro finiti Dati una funzione reale f definita in D f e un numero reale x 0 [D f ]: Si definisce ite finito sinistro di f(x) per

Dettagli

DEFINIZIONE DI LIMITE

DEFINIZIONE DI LIMITE DEFINIZIONE DI LIMITE LIMITE FINITO PER x CHE TENDE A UN VALORE FINITO Sia y = f(x) una funzione definita in un intorno completo I del punto x 0, escluso al più il punto x 0 (x 0 è un punto di accumulazione)

Dettagli

Definizione di limite

Definizione di limite Definizione di limite Simone Alghisi Liceo Scientifico Luzzago A.S. 2014/2015 Simone Alghisi (Liceo Scientifico Luzzago) Definizione di limite A.S. 2014/2015 1 / 16 Definizioni Iniziamo con il ricordare

Dettagli

Modelli di secondo grado

Modelli di secondo grado MATEMATICAperTUTTI ESERCIZIO SVOLTO Le equazioni di secondo grado incompete. Un equazione di secondo grado si può sempre scrivere nea sua forma normae ax þ bx þ c 0 dove a, b, c sono numeri reai con a

Dettagli

LIMITI DI FUNZIONI ED ASINTOTI (C. Dimauro) 2 è un intorno di x 0. I, con l intervallo aperto ] x δ + δ [ 0 ; x. x 0 A con A R, si dice che x 0 è un

LIMITI DI FUNZIONI ED ASINTOTI (C. Dimauro) 2 è un intorno di x 0. I, con l intervallo aperto ] x δ + δ [ 0 ; x. x 0 A con A R, si dice che x 0 è un LIMITI DI FUNZIONI ED ASINTOTI (C. Dimauro) Premessa Intorno di un punto: si chiama intorno completo di intervallo aperto che contiene x 0. Es.: sia = [ 0;10] Graficamente: A ed 3 x. L intervallo ] ;5[

Dettagli

Grafici di particolari funzioni lineari

Grafici di particolari funzioni lineari A Grafici di particoari funzioni ineari Vogiamo tracciare i grafico dea funzione y ˆ jxj. x quando x 0 Sappiamo che jxj significa x quando x < 0 Possiamo aora riscrivere 'equazione di questa funzione in

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Limiti. Lezione per Studenti di Agraria Università di Bologna. (Università di Bologna) Limiti 1 / 24

Limiti. Lezione per Studenti di Agraria Università di Bologna. (Università di Bologna) Limiti 1 / 24 Limiti Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Limiti 1 / 24 Esempi Sia f (x) = 2x + 2 ; calcoliamo f (x) per x che assume valori vicini a 1. Per prima cosa, prendiamo

Dettagli

Nicola De Rosa, Liceo scientifico sperimentale sessione straordinaria 2012, matematicamente.it

Nicola De Rosa, Liceo scientifico sperimentale sessione straordinaria 2012, matematicamente.it Nicoa De Rosa Liceo scientiico sperimentae sessione straordinaria matematicamente.it PROBLEMA La sezione trasversae di un canae di imgazione ha a orma di un trapezio isoscee con a base maggiore in ato.

Dettagli

Limiti di funzioni 1 / 39

Limiti di funzioni 1 / 39 Limiti di funzioni 1 / 39 Comportamento agli estremi: operazione di ite 2 / 39 Sia f (x) una funzione definita su R e supponiamo di voler studiare l andamento della funzione agli estremi del dominio: x

Dettagli

La topologia della retta (esercizi svolti)

La topologia della retta (esercizi svolti) La topologia della retta (esercizi svolti) Massimo Pasquetto ITS Cangrande della Scala Verona 6 novembre 2017 Esercizi tratti dal capitolo 12 del libro di testo [1] e svolti nelle classi 4A e 4C dell ITS

Dettagli

8. LIMITI. Definizioni e primi teoremi Calcolo di limiti

8. LIMITI. Definizioni e primi teoremi Calcolo di limiti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 8. LIMITI Definizioni e primi teoremi Calcolo di limiti A. A. 213-214 1 IDEA INTUITIVA DI LIMITE I Caso Sia f una funzione definita in ogni punto

Dettagli

x x Si dice che il limite, per x che tende a x 0, di f ( x ) è uguale a se e solo se:

x x Si dice che il limite, per x che tende a x 0, di f ( x ) è uguale a se e solo se: 24 7. LA DEFINIZIONE RIGOROSA DI LIMITE 1 CASO: LIMITE FINITO PER x CHE TENDE AD UN VALORE FINITO Definizione: ( x lim ( = I I / I { }, ( I f x x x x f x x Si dice che il limite, per x che tende a x, di

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione straordinaria 2012, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione straordinaria 2012, matematicamente.it Nicoa De Rosa, Liceo scientifico di ordinamento sessione straordinaria, matematicamente.it PROBLEMA I triangoo ABC, rettangoo in A, ha ipotenusa BC a ; sia P i punto medio di AC, Q a sua proiezione ortogonae

Dettagli

kx 1 cos 2 ax 3 kx 2 cos 2 ax 3 ak 2 (x2 1 + x2 2 ) sin 2ax 3

kx 1 cos 2 ax 3 kx 2 cos 2 ax 3 ak 2 (x2 1 + x2 2 ) sin 2ax 3 1 Souzioni Tutorato 1 1/3/17) Esercizio 1 Si consideri a forza posizionae F : R 3 R 3 definita come segue: Fx) = kx 1 cos ax 3 kx cos ax 3, ak x 1 + x ) sin ax 3 dove k e a sono parametri positivi. Si

Dettagli

þ k Þy ¼ ð 1 3k Þx 2 þ 21 k

þ k Þy ¼ ð 1 3k Þx 2 þ 21 k A I fasci di paraboe Come equazione di un fascio di rette è a combinazione ineare di due particoari rette, e sue generatrici, anche un fascio di paraboe è a combinazione ineare di due particoari di esse.

Dettagli

LIMITI SIMULAZIONI GEOGEBRA PER I LIMITI (LINK) LIMITI pagina 1

LIMITI SIMULAZIONI GEOGEBRA PER I LIMITI (LINK) LIMITI pagina 1 LIMITI SIMULAZIONI GEOGEBRA PER I LIMITI (LINK) LIMITI pagina 1 DEFINIZIONE 1 LIMITE FINITO PER x CHE TENDE A UN VALORE FINITO Sia y = f(x) una funzione definita in un intorno completo I del punto x 0,

Dettagli

5. Limiti di funzione.

5. Limiti di funzione. Istituzioni di Matematiche - Appunti per e ezioni - Anno Accademico / 6 5. Limiti di funzione. 5.. Funzioni imitate. Una funzione y = f(x) definita in un intervao [ a b] imitata superiormente in tae intervao

Dettagli

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio A. Figà Talamanca 14 ottobre 2010 2 0.1 Ancora limiti di funzioni di variabile reale Esercizio 1 Sia f(x) = [sin x] definita nell insieme [0,

Dettagli

Funzioni continue. quando. se è continua x I.

Funzioni continue. quando. se è continua x I. Funzioni continue Definizione: f() si dice continua in 0 D f quando (*) 0 f () f ( 0 ) Definizione: f() si dice continua in I D f se è continua I. Avevamo già dato questa definizione parlando del f ().

Dettagli

3 LIMITI. 3.1 Operazioni in R {± } x R x + (+ ) = + x + ( ) = x + = 0 x. x R = 0. x > 0 x (+ ) = + x ( ) = x < 0 x (+ ) = x ( ) = = x.

3 LIMITI. 3.1 Operazioni in R {± } x R x + (+ ) = + x + ( ) = x + = 0 x. x R = 0. x > 0 x (+ ) = + x ( ) = x < 0 x (+ ) = x ( ) = = x. 3 LIMITI 3. Operazioni in R {± } R + (+ ) = + + ( ) = R + = 0 = 0 > 0 (+ ) = + ( ) = < 0 (+ ) = ( ) = + > 0 0 + = + 0 = < 0 0 + = 0 = + (+ ) + (+ ) = + ( ) + ( ) = (+ ) (+ ) = + (+ ) ( ) = Non è possibile

Dettagli

4. determinare un sistema di vettori applicati, equivalente a quello proposto, formato da due vettori, di cui uno applicato in Q (1, 0, 1).

4. determinare un sistema di vettori applicati, equivalente a quello proposto, formato da due vettori, di cui uno applicato in Q (1, 0, 1). 1 Università di Pavia Facotà di Ingegneria Corso di Laurea in Ingegneria Industriae Correzione prova scritta Esame di Fisica Matematica 18 gennaio 212 1. Determinare, per i seguente sistema di vettori

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 20/202. Esercizi: lezione 8 novembre 20 Studio di funzione con indicazione degli asintoti e grafico probabile Studiare completamente

Dettagli

Limiti di funzioni 1 / 41

Limiti di funzioni 1 / 41 Limiti di funzioni 1 / 41 Comportamento agli estremi: operazione di ite 2 / 41 Sia f (x) una funzione definita su R e supponiamo di voler studiare l andamento della funzione agli estremi del dominio: x

Dettagli

Limiti di funzioni. Mauro Saita Versione provvisoria. Ottobre 2015

Limiti di funzioni. Mauro Saita  Versione provvisoria. Ottobre 2015 Limiti di funzioni Mauro Saita e-mail maurosaita@tiscalinet.it Versione provvisoria. Ottobre 2015 Indice 1 Limiti 2 1.1 Definizione di ite................................ 2 1.2 Alcuni teoremi sui iti..............................

Dettagli

6. LIMITI. Definizione - Funzioni continue - Calcolo dei limiti

6. LIMITI. Definizione - Funzioni continue - Calcolo dei limiti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 6. LIMITI Definizione - Funzioni continue - Calcolo dei limiti A. A. 2014-2015 L.Doretti 1 IDEA INTUITIVA DI LIMITE I Caso: comportamento di una

Dettagli

LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO

LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO LA DI LIMITE FINITO IN UN PUNTO 1 LA Quando x si avvicina a x 0, f(x) si avvicina a f(x 0 ) o a un altro valore reale l? Quando x si avvicina a x 0, f(x) si avvicina a un valore l che è proprio f(x 0 )

Dettagli

ROTAZIONI DEGLI ESTREMI DI UNA TRAVE PRISMATICA APPOGGIATA ALLE ESTREMITÁ E SOGGETTA AD UN CARICO VERTICALE

ROTAZIONI DEGLI ESTREMI DI UNA TRAVE PRISMATICA APPOGGIATA ALLE ESTREMITÁ E SOGGETTA AD UN CARICO VERTICALE M. G. USTO ROTZIONI DEGLI ESTREMI DI UN TRVE PRISMTIC PPOGGIT LLE ESTREMITÁ E SOGGETT D UN CRICO VERTICLE CSO DEI CRICHI TRINGOLRE, UNIFORME E CONCENTRTO mgbstudio.net PGIN INTENZIONLMENTE VUOT SOMMRIO

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 30-31 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezioni del 30-31/10/2008 1 / 26 Intervalli - Punti interni, ecc.

Dettagli

Esercitazione 02: Calcolo degli spostamenti mediante il metodo degli integrali di Mohr

Esercitazione 02: Calcolo degli spostamenti mediante il metodo degli integrali di Mohr Meccanica e Tecnica dee Costruzioni Meccaniche Esercitazioni de corso. Periodo II Prof. Leonardo ERTINI Ing. Ciro SNTUS Esercitazione : Cacoo degi spostamenti mediante i metodo degi integrai di Mohr Indice

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2011/2012 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 35 index Il concetto di limite 1 Il

Dettagli

= con n N è insieme infinito n limitato sia inferiormente che superiormente, infatti i suoi elementi verificano la condizione 0 a 1.

= con n N è insieme infinito n limitato sia inferiormente che superiormente, infatti i suoi elementi verificano la condizione 0 a 1. Introduzione concetto di imite Prim di vvire i discorso sui imiti è opportuno rivedere i signiicto di cuni termini che sono di uso comune ne trttzione de imite di un unzione. Insieme imitto superiormente:

Dettagli

Derivabilità, invertibilità e studi di funzione

Derivabilità, invertibilità e studi di funzione Derivabilità, invertibilità e studi di funzione. Studiare la continuità e la derivabilità delle funzioni elencate in tutto il loro dominio di definizione e calcolare la derivata nei punti in cui la funzione

Dettagli

L INSIEME DEI NUMERI REALI. DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali.

L INSIEME DEI NUMERI REALI. DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali. PROF GIOVANNI IANNE L INSIEME DEI NUMERI REALI DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali DEFINIZIONE DI INTERVALLO L intervallo è un particolare insieme

Dettagli

Studio qualitativo. Emanuele Paolini 2 luglio 2002

Studio qualitativo. Emanuele Paolini 2 luglio 2002 Studio qualitativo Emanuele Paolini 2 luglio 2002 Non sempre è possibile determinare esplicitamente le soluzione di una equazione differenziale. Ci proponiamo quindi di trovare dei metodi per determinare

Dettagli

POTENZIALI RETTANGOLARI SFERICI

POTENZIALI RETTANGOLARI SFERICI 7/3 POTENZIALI RETTANGOLARI SFERICI bozza 06/07 POTENZIALI RETTANGOLARI SFERICI Buca di potenziae V b r V 0 Stati egati: V 0 < E < 0 k = ħ me + V0, κ = ħ m E, e souzioni de equazione radiae nea regione

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

Esercitazione 7 del corso di Statistica 2

Esercitazione 7 del corso di Statistica 2 Esercitazione 7 de corso di Statistica Dott.ssa Paoa Costantini 0 Marzo 009 Esercizio a distribuzione dei pesi dei pesi pacchetti per confezionare per confezionare e caramee, in grammi, prodotti da un

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Terzo Scritto [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Terzo Scritto [ ] Corsi di aurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA Terzo Scritto [13-9-2018] 1. Un sistema meccanico è costituito da una sbarra rettiinea omogenea pesante di massa M e unghezza

Dettagli

LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO

LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO 2 INTERVALLI Limitati: Chiuso: a x b [a;b] Aperto: a

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 06 - Limiti Anno Accademico 2015/2016 M. Tumminello, V.

Dettagli

6 - Grafici di funzioni

6 - Grafici di funzioni 6 - Grafici di funzioni Dato una funzione reale di variabile reale f, si richiede di dare una rappresentazione (approssimata) del grafico di f, vale a dire delle coppie di punti di R 2 della forma (x,

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli

INTRODUZIONE ALLA TEORIA DEI LIMITI prof. Danilo Saccoccioni

INTRODUZIONE ALLA TEORIA DEI LIMITI prof. Danilo Saccoccioni INTRODUZIONE ALLA TEORIA DEI LIMITI prof. Danilo Saccoccioni L'analisi matematica classica prende le mosse dalla nozione di ite. Inizialmente la presentazione sarà del tutto informale e qualitativa, poi

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2013/2014 Univ. degli Studi di Milano D.Bambusi, C.Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 45 index Il concetto di ite 1 Il

Dettagli

LICEO LINGUISTICO NINNI CASSARÁ. Classe VA. Studio di Funzioni. prof. Alessio Cangemi

LICEO LINGUISTICO NINNI CASSARÁ. Classe VA. Studio di Funzioni. prof. Alessio Cangemi LICEO LINGUISTICO NINNI CASSARÁ Classe VA Studio di Funzioni prof. Alessio Cangemi Di seguito saranno schematizzati gli step fondamentali per tracciare il grafico probabile di una funzione f(x). 1 Ricerca

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA

CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA n. (8 dicembre 009) PROBLEMA Punto a b = ( f '( ) = 0 a( b( (*) = a( b( da cui: a b a 9b = = 5 5 5 5 a 9 5 passaggio per, a 5 = 5 5 5 6 f ' uguale a zero

Dettagli

I LIMITI. non è definita per valori della x uguali a + 5 e 5. In questo caso l insieme di variabilità della variabile x, che si chiama dominio, è

I LIMITI. non è definita per valori della x uguali a + 5 e 5. In questo caso l insieme di variabilità della variabile x, che si chiama dominio, è I LIMITI LIMITE INFINITO DI UNA FUNZIONE PER X CHE TENDE A UN VALORE FINITO. Tra i tanti obiettivi che l analisi matematica si prefigge vi è quello di tracciare i grafici delle funzioni nel piano cartesiano

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti)

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti) Analisi e Geometria Seconda Prova 3 gennaio 207 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media

Dettagli

LE POTENZE DEI NUMERI

LE POTENZE DEI NUMERI ARITMETICA LE POTENZE DEI NUMERI PREREQUISITI conoscere e proprietaá dee quattro operazioni svogere cacoi a mente ed in coonna con e quattro operazioni risovere espressioni con e quattro operazioni distinguere

Dettagli

Esercitazioni di matematica Corso di Istituzioni di Matematica 1B Facoltà di Architettura Anno Accademico 2005/2006. Anna Scaramuzza.

Esercitazioni di matematica Corso di Istituzioni di Matematica 1B Facoltà di Architettura Anno Accademico 2005/2006. Anna Scaramuzza. Esercitazioni di matematica Corso di Istituzioni di Matematica 1B Facoltà di Architettura Anno Accademico 2005/2006 Anna Scaramuzza 5 Dicembre 2005 1 Le funzioni Una funzione f : X Y è una legge che associa

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri,

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri, Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 202/203 docente: Elena Polastri, plslne@unife.it Studio di funzione con indicazione degli asintoti e grafico probabile Studiare

Dettagli

Corso di Laurea in Scienze dell Architettura Modulo di Analisi Matematica

Corso di Laurea in Scienze dell Architettura Modulo di Analisi Matematica Corso di Laurea in Scienze dell Architettura Modulo di Analisi Matematica 62,5 ore di lezione frontale mariannasaba@unica.it Orario lezioni: Lunedì ore 11:15-13:00 Giovedì ore 15:00-16:45 Venerdì ore 8:15-10:00

Dettagli

Scopo dell esperienza: verificare le leggi del pendolo e la validità dell approssimazione delle piccole oscillazioni.

Scopo dell esperienza: verificare le leggi del pendolo e la validità dell approssimazione delle piccole oscillazioni. Moto di un pendoo, soggetto a smorzamento. Scopo de esperienza: verificare e eggi de pendoo e a vaidità de approssimazione dee piccoe osciazioni. Un pendoo sempice è costituito da una massa puntiforme

Dettagli

Risoluzione di un telaio iperstatico col metodo degli spostamenti. Complemento alla lezione 48/50: Il metodo degli spostamenti

Risoluzione di un telaio iperstatico col metodo degli spostamenti. Complemento alla lezione 48/50: Il metodo degli spostamenti Risouzione di un teaio iperstatico co metodo degi spostamenti ompemento aa ezione 48/50: I metodo degi spostamenti La struttura in figura è soggetta ad una forza concentrata F a metà de traverso. I teaio

Dettagli

Lezione 17 (20 dicembre) Funzioni composte Funzione inversa (cenni) Introduzione ai limiti

Lezione 17 (20 dicembre) Funzioni composte Funzione inversa (cenni) Introduzione ai limiti Lezione 17 (20 dicembre) Funzioni composte Funzione inversa (cenni) Introduzione ai iti Funzioni composte Siano g: A B e f: B C due funzioni. Allora si chiama funzione composta la funzione definita da:

Dettagli

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 05 - Limiti Anno Accademico 2013/2014 D. Provenzano M. Tumminello,

Dettagli

Due incognite ipertstatiche con cedimento elastico lineare sul vincolo

Due incognite ipertstatiche con cedimento elastico lineare sul vincolo Dott. Ing aoo Serafini Cic per tutti gi appunti (AUTOAZIONE TRATTAENTI TERICI ACCIAIO SCIENZA dee COSTRUZIONI ) e-mai per suggerimenti Due incognite ipertstatiche con cedimento eastico ineare su vincoo

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2 Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili

Dettagli

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Funzioni continue Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Funzioni continue Analisi Matematica 1 1 / 44 Funzioni continue Definizione Siano f : A

Dettagli

x x x f(x) 5-f(x) Approccio Intuitivo Man mano il valore di x si avvicina a x 0 il valore di f(x) si avvicina a L

x x x f(x) 5-f(x) Approccio Intuitivo Man mano il valore di x si avvicina a x 0 il valore di f(x) si avvicina a L Deinizione imite Approccio Intuitivo ( ) Man mano il valore di si avvicina a il valore di () si avvicina a ( 2 22 2 ) Possiamo precisare meglio: 5 ( 2 ) 5 () 5-(),968377 4,87459,2549,99 4,96,399,996838

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 2 1 / 42 Equazioni differenziali Un equazione

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

CONTINUITA. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Limiti di funzioni - Funzioni continue cap3b.pdf 1

CONTINUITA. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Limiti di funzioni - Funzioni continue cap3b.pdf 1 CONTINUITA c Paola Gervasio - Analisi Matematica - A.A. 208/9 Limiti di funzioni - Funzioni continue cap3b.pdf Ricordiamo la definizione di limite lim 0 f () = l R: I ε (l), I δ ( 0 ) : dom(f ) I δ ( 0

Dettagli

Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { }

Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { } Tema : esercizi. Studiare la funzione seguente e tracciarne un grafico qualitativo. ) Dominio ( ) { } R \ f Dom ) Intersezione con gli assi impossibile per il dominio ± e si ottiene ancora ( ) ; e ( )

Dettagli

Derivate e studio di funzioni di una variabile

Derivate e studio di funzioni di una variabile Derivate e studio di funzioni di una variabile Paolo Montanari Appunti di Matematica Derivate e studio di funzioni 1 Rapporto incrementale e derivata Sia f(x) una funzione definita in un intervallo X R

Dettagli

Limiti di funzioni e continuità

Limiti di funzioni e continuità Limiti di funzioni e continuità Paolo Montanari Appunti di Matematica Limiti di funzioni e continuità 1 Funzioni limitate La funzione f(x) è limitata superiormente se esiste un numero reale M tale che

Dettagli

METODO DEGLI SPOSTAMENTI

METODO DEGLI SPOSTAMENTI Corso / MTODO DGLI SPOSTAMNTI.. Introuzione ee conizioni a contorno e souzione Per trovare gi spostamenti incogniti ei noi bisogna introurre nea reazione matriciae i equiibrio e conizioni a contorno, espresse

Dettagli

Istituzioni di Matematiche prima parte

Istituzioni di Matematiche prima parte Istituzioni di Matematiche prima parte anno acc. 2010/2011 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 45 index Proprietà elementari dei sottoinsiemi

Dettagli

INTERVALLI DI NUMERI SULL ASSE DEI NUMERI REALI. ANALISI MATEMATICA_2 INTERVALLIi numerici - 1 -

INTERVALLI DI NUMERI SULL ASSE DEI NUMERI REALI. ANALISI MATEMATICA_2 INTERVALLIi numerici - 1 - INTERVALLI DI NUMERI SULL ASSE DEI NUMERI REALI ANALISI MATEMATICA_2 INTERVALLIi numerici - 1 - Esiste una corrispondenza biunivoca tra i numeri reali e i punti di una retta: Ad ogni punto P della retta

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi: lezione 2 novembre 2011 Studio di funzioni Studiare le seguenti funzioni FINO alla derivata prima,

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

Verifica di limiti (esercizi svolti)

Verifica di limiti (esercizi svolti) Verifica di iti (esercizi svolti) assimo Pasquetto ITS Cangrande della Scala Verona 2 novembre 207 Esercizi tratti dal capitolo 2 del libro di testo [] e svolti nelle classi 4A e 4C dell ITS Cangrande

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioni degli esercizi di Analisi Matematica I (Prof. Pierpaolo Natalini) Roberta Bianchini 30 ottobre 07 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) = arccos x x + π/3.. Verificare

Dettagli

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x Studi di funzione D. Barbieri Esercizi Esercizio Esercizio Studiare comportamento asintotico e monotonia di f(x) = x + x4 + 4x Studiare il comportamento asintotico di f(x) = + x x + + e x Esercizio 3 Determinare

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su

Dettagli