MOMENTI DI INERZIA. m i. i=1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MOMENTI DI INERZIA. m i. i=1"

Transcript

1 MOMENTI DI INEZIA Massa Ad ogni punto materiale si associa uno scalare positivo m che rappresenta la quantità di materia di cui è costituito il punto. m, la massa, è costante nel tempo. Dato un sistema discreto di punti P i, a ciascuno di essi sarà associata la sua massa m i. La massa è additiva, ovvero la massa del sistema è data da P m := N m i. (1) Se il corpo è continuo, si può definire in ogni punto P del corpo una funzione non negativa ρ (P ), la densità, che rappresenta la massa per unità di volume (o di superficie, o di lunghezza) del corpo, la cui massa totale m := ρ (P ) d. (2) entro di Massa Definizione 1 Dato un sistema discreto di N punti materiali di massa m i,oppure un corpo continuo di densità ρ (P ), fissata una origine O, sidicecentrodimassa il punto G individuato dal vettore posizione nel caso discreto, oppure nel caso continuo. m i P i O (3) m i ρ (P ) d ρ (P ) d P O Osservazione 1 La formula del centro di massa è simile alla formula del baricentro. icordiamo che p = m g per corpi con estensione sufficientemente piccola rispetto alle dimensioni della terra. g si può supporre costante. In questo caso i pesi sono un sistema di forze parallele esiste dunque il centro di questo sistema di forze, detto baricentro, che coincide con il centro di massa. Infatti per un sistema discreto p i P i O = p i mentre per un sistema continuo m i /g P i O m i /g κ (P ) d κ (P ) d = P O m i P i O 5 (4), (5) m i, (6)

2 6 dove con κ (P ) indichiamo il peso specifico. Ma κ (P )=ρ (P ) g, quindi ρ (P ) /gd ρ (P ) /gd P O ρ (P ) d = ρ (P ) d P O. (7) Momento d Inerzia Definizione 2 Si definisce momento d inerzia rispetto ad un asse a, la seguente quantità scalare I a := mr 2. (8) Si noti che I a = P a. (9) In generale I a. Definizione 3 Si definisce momento d inerzia per un sistema discreto di N punti rispetto ad un asse a, la seguente quantità scalare P I a := N m i ri 2. (1) In questo caso I a = tutti i punti P i sono sull asse a.

3 Definizione 4 Si definisce momento d inerzia per un sistema continuo rispetto ad un asse a, la seguente quantità scalare 7 I a := r 2 (P ) dm = r 2 (P ) ρ (P ) d. (11) M Esempio 1 Asta omogenea di lunghezza l emassam formante un angolo θ con l asse a. Sia ρ = m/l la densità dell asta. Detto x p un punto generico dell asta, la lunghezza del segmento OP vale r = x p sin θ. AlvariaredelpuntoP sull asta, il momento d inerzia si può scrivere come I a = l Z2 m l r2 dx = l Z2 m l (x sin θ)2 dx = m l sin2 θ l Z2 x 2 dx l 2 l 2 l 2 = m x 3 l sin2 θ 3 l 2 l 2 = m µ l 3 3l sin2 θ = m l sin2 θ. (12) Se l angolo θ = π/2 = I a = m l2 12. (13)

4 8 Esempio 2 Disco omogeneo di raggio emassam Il punto P è individuato dalle coordinate (r, θ) con r e π θ π. alcoliamo l area infinitesima da AB = rdθ A B = drdθ AA = dr da = rdrdθ La distanza del punto generico P dall asse è data da PP = r sin θ e la densità è ρ = M/π 2. Il momento d inerzia rispetto all asse a è Z I a = Z M π π 2 r2 sin 2 θrdθdr = π Z M π 2 r2 sin 2 θrdθdr (stiamo variando r tra e e θ varia tra π e π) Z M π π 2 π sin 2 θ Z r 2 rdr dθ = M π 2 Z π π 4 4 sin2 θdθ = M2 π4 Z π π sin 2 θdθ M 2 Z π π4 2 sin 2 θdθ = M2 π2 Z π 1 cos 2θ dθ 2 = M2 π2 ½ 1 2 [θ]π 1 2 sin 2θ 2 π ¾ = M2 π2 π 2 = M2 4 (14)

5 9 Teorema 1 Sia assegnato il piano π esiaz π, allora I z = I x + I y (15) con x, y qualunque coppia di assi ortogonali appartenenti al piano π passante per l origine O. Dimostrazione. Per definizione I z = Σ x 2 + y 2 ρdσ ρx 2 dσ + ρy 2 dσ = I x + I y. (16) Σ Σ Teorema 2 (di Huygens) (alcolo dei momenti d inerzia rispetto ad assi paralleli) Sia I G il valore del momento d inerzia calcolato rispetto all asse passante per il baricentro G. Indichiamo con d la distanza tra l asse baricentrale e un asse parallelo ad esso. Allora, indicato con I a il momento d inerzia calcolato rispetto all asse a, vale la relazione I a = I G + md 2. (17)

6 1 Dimostrazione. Sia d 2 = a 2 + b 2 e I a = ρ (P ) (x a) 2 +(y b) 2 d ρ (P ) x 2 + y 2 d + ρ (P ) a 2 + b 2 d 2a ρ (P ) xd 2b ρ (P ) yd I G + md 2 2amx G 2bmy G. (18) Poichè le coordinate del baricentro sono x G = y G =, vale l equazione (17). Osservazione 2 I a I G. Osservazione 3 Fra tutti gli assi paralleli con direzione assegnata, quello passante per il baricentro minimizza il momento d inerzia. Osservazione 4 Se a 1 e a 2 sono due assi paralleli distanti d 1 e d 2 rispettivamente dal baricentro del corpo I a2 = I a1 + m d 2 2 d 2 1. (19) Matrice d Inerzia Scegliamo una terna ortogonale di riferimento con origine O. Sia u il versore dell asse passante per O t.c. u = α i + β j + γ k con α, β e γ coseni direttori rispetto alla terna (O; x, y, z). Scriviamo il momento d inerzia rispetto all asse u I u = r 2 (P ) ρ (P ) d. (2)

7 alcoliamo, attraverso la definizione 11 P O u, corrispondente al vettore r (P ). i j k r (P )= P O u = x y z α β γ = i (yγ zβ) j (xγ zα)+ k (xβ yα) (21) e il suo modulo r (P ) = P O u = P O u sin θ = P O sin θ. (22) alcoliamone il quadrato r 2 (P )= P O u 2 =(yγ zβ) 2 +(xγ zα) 2 +(xβ yα) 2 (23) e sostituiamolo nell espressione (2). Si ottiene I u = ρ (yγ zβ) 2 d + ρ (xγ zα) 2 d + ρ (xβ yα) 2 d = γ 2 ρ y 2 + x 2 d + β 2 ρ x 2 + z 2 d + α 2 ρ z 2 + y 2 d 2αγ ρxzd 2αβ ρxyd 2βγ ρyzd = α 2 I xx + β 2 I yy +γ 2 I zz +2αγI xz +2αβI xy +2βγI yz, (24) dove abbiamo definito i prodotti d inerzia I xz = ρxzd I xy = ρxyd I yz = ρyzd (25) e i momenti d inerzia rispetto agli assi coordinati I xx = ρ (z 2 + y 2 ) d I yy = ρ (x 2 + z 2 ) d I zz = ρ (y 2 + x 2 ) d. (26) Definizione 5 Denotiamo con il simbolo I la matrice d inerzia (o tensore d inerzia) formata dai seguenti elementi I xx I xy I xz I yx I yy I yz. (27) I zx I zy I zz

8 12 Osservazione 5 La quantità espressa dall espressione (2) può essere riscritta nel seguente modo I u =(α, β, γ) I α β = I u u. (28) γ Icoefficienti della matrice I dipendono dalla scelta della terna degli x, y, z. Osservazione 6 Esiste sicuramente almeno una terna rispetto alla quale la matrice I assume una forma diagonale I xx I yy. (29) I zz Questa terna si chiama terna principale d inerzia del corpo relativo al punto O. Osservazione 7 I xx,i yy e I zz sono diversi dagli elementi della matrice (27). Infattisonoimomentid inerziacalcolatirispettoagliassiprincipalid inerziaesono chiamati momenti principali d inerzia. Proprietà 1 Se il corpo ha un piano di simmetria materiale π passante per O è asse principale d inerzia la retta che passa per O perpendicolare al piano. Gli altri due assi vanno cercati nel piano. aso 1 Se il corpo è una figura piana, ogni retta perpendicolare al piano è asse principale d inerzia rispetto al punto O in cui la retta interseca il piano. aso 2 Se il corpo ha due piani di simmetria materiale fra loro ortogonali, per ogni punto della retta d intersezione dei due piani la terna principale d inerzia è costituita dalla retta e dalle due normali. aso 3 Se il corpo è rotondo, ammette piani di simmetria tutti contenenti l asse di rotazione. L asse, quindi, è principale d inerzia e sono principali d inerzia tutti gli assi perpendicolari in O all asse di rotazione (essendo O un qualunque punto dell asse)

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

Proiezioni Grafica 3d

Proiezioni Grafica 3d Proiezioni Grafica 3d Giancarlo RINALDO rinaldo@dipmat.unime.it Dipartimento di Matematica Università di Messina ProiezioniGrafica 3d p. 1 Introduzione Il processo di visualizzazione in 3D è intrinsecamente

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

Dinamica del corpo rigido: Appunti.

Dinamica del corpo rigido: Appunti. Dinamica del corpo rigido: Appunti. I corpi rigidi sono sistemi di punti materiali, discreti o continui, che hanno come proprietà peculiare quella di conservare la loro forma, oltre che il loro volume,

Dettagli

I appello - 24 Marzo 2006

I appello - 24 Marzo 2006 Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

Capitolo 16 Esercizi sugli integrali doppi

Capitolo 16 Esercizi sugli integrali doppi Capitolo 6 sercizi sugli integrali doppi Brevi richiami di teoria Sia f : [a, b] [c, d] B IR una funzione limitata e non negativa, definita sul rettangolo R = [a, b] [c, d]. Dividiamo l intervallo [a,

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari. esiste (evidentemente) una sola coppia ( ρ, θ) R [ 0,2π[

Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari. esiste (evidentemente) una sola coppia ( ρ, θ) R [ 0,2π[ Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari Osservazione: Se ( x, ) \{(0,0)} esiste (evidentemente) una sola coppia ( ρ, θ) [ 0,[ tale che x. imane in tal modo

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A)

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A) Esame di Geometria - 9 CFU (Appello del 28 gennaio 23 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Nello spazio R 3, siano dati il piano e i punti P = (, 2, ), Q = (2,, ). π : x + 2y 3

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

Capitolo 1. Integrali multipli. 1.1 Integrali doppi su domini normali. Definizione 1.1.1 Si definisce dominio normale rispetto all asse

Capitolo 1. Integrali multipli. 1.1 Integrali doppi su domini normali. Definizione 1.1.1 Si definisce dominio normale rispetto all asse Contenuti 1 Integrali multipli 2 1.1 Integralidoppisudomininormali... 2 1.2 Cambiamento di variabili in un integrale doppio. 6 1.3 Formula di Gauss-Green nel piano e conseguenze. 7 1.4 Integralitripli...

Dettagli

Calcolo integrale in più variabili

Calcolo integrale in più variabili ppunti di nalisi II Calcolo integrale in più variabili Integrali doppi Nel caso di una funzione di una variabile f : a, b] R, supponendo f continua e fx) a, b], la quantità b a fx)dx indica l area fra

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Processo di rendering

Processo di rendering Processo di rendering Trasformazioni di vista Trasformazioni di vista Il processo di visione in tre dimensioni Le trasformazioni di proiezione 2 Rendering nello spazio 2D Il processo di rendering (visualizzazione)

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2 SOLUZIONE DEL PROBLEMA CORSO DI ORDINAMENTO. Studiamo la funzione f(x) = x R). Notiamo che f( x) = 4 + x, con dominio R (infatti x + 4 per ogni 4 + ( x) = 4 + x = f(x), cioè la funzione è pari e il grafico

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

Anno 5 4. Funzioni reali: il dominio

Anno 5 4. Funzioni reali: il dominio Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano. LA RETTA DESCRIZIONE GENERALE Nella GEOMETRIA ANALITICA si fa sempre un riferimento rispetto al piano cartesiano Oxy; questa riguarda lo studio della retta, delle trasformazioni lineari piane e delle coniche.

Dettagli

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizio 1 Testo Sia F F 1 x,y),f x,y)) ) x 1 x y + 1 x, y 1 x y + 1 y un campo vettoriale. 1. Si determini il dominio in cui

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto Registro delle lezioni di MECCANICA 1 Corso di Laurea in Matematica 8 CFU - A.A. 2014/2015 docente: Francesco Demontis ultimo aggiornamento: 21 maggio 2015 1. Lunedì 2/03/2015, 11 13. ore: 2(2) Presentazione

Dettagli

Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1

Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1 Analisi delle reti 1. Analisi nodale (metodo dei potenziali dei nodi) 1.1 Analisi nodale in assenza di generatori di tensione L'analisi nodale, detta altresì metodo dei potenziali ai nodi, è un procedimento

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

Integrali di superficie: esercizi svolti

Integrali di superficie: esercizi svolti Integrali di superficie: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali superficiali sulle superfici

Dettagli

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO Quantità di Moto Definizione 1 Per un punto P dotato di massa m e velocità v, sidefinisce quantità di moto il seguente vettore Q := m v. (1) Definizione

Dettagli

Unità Didattica N 28 Punti notevoli di un triangolo

Unità Didattica N 28 Punti notevoli di un triangolo 68 Unità Didattica N 8 Punti notevoli di un triangolo Unità Didattica N 8 Punti notevoli di un triangolo 0) ircocentro 0) Incentro 03) Baricentro 04) Ortocentro Pagina 68 di 73 Unità Didattica N 8 Punti

Dettagli

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo: Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Laboratorio di Rappresentazione e Modellazione dell Architettura

Laboratorio di Rappresentazione e Modellazione dell Architettura Laboratorio di Rappresentazione e Modellazione dell Architettura Seconda Università di Napoli Facoltà di Architettura Corso di Laurea in Architettura Laboratorio di Rappresentazione e Modellazione dell

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Esercizi svolti e assegnati su integrali doppi e tripli

Esercizi svolti e assegnati su integrali doppi e tripli Esercizi svolti e assegnati su integrali doppi e tripli Esercizio. ove R R xy x + y + x + y dxdy } x, y R : x, y, x x + y x Svolgimento. Passo : per disegnare R, studiamo C : x + y x, C : x + y x Completando

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria Esercizi sul calcolo differenziale in IR N Dott Franco Obersnel Esercizio 1 Si calcoli la derivata direzionale nell origine lungo la direzione y del versore v

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

FAM. 1. Sistema composto da quattro PM come nella tabella seguente

FAM. 1. Sistema composto da quattro PM come nella tabella seguente Serie 11: Meccanica IV FAM C. Ferrari Esercizio 1 Centro di massa: sistemi discreti Determina il centro di massa dei seguenti sistemi discreti. 1. Sistema composto da quattro PM come nella tabella seguente

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario. Le soluzioni del foglio 2. Esercizio Calcolare il lavoro compiuto dal campo vettoriale F = (y + 3x, 2y x) per far compiere ad una particella un giro dell ellisse 4x 2 + y 2 = 4 in senso orario... Soluzione.

Dettagli

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2 Indice 1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale..................... 1 1.2 Un esempio................................. 2 2 Spazi Vettoriali, Spazio e Tempo 7 2.1 Cos

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM10 - Fisica Matematica I Seconda Prova di Esonero [13-01-01] Soluzioni Problema 1 1. Il moto si svolge in un campo di forze centrale in assenza di attrito. Pertanto si avranno due integrali primi del

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali. 1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

a t Esercizio (tratto dal problema 5.10 del Mazzoldi)

a t Esercizio (tratto dal problema 5.10 del Mazzoldi) 1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione

Dettagli

M P = PA^V. Il risultante e denito semplicemente come la somma dei vettori di a

M P = PA^V. Il risultante e denito semplicemente come la somma dei vettori di a VETTORI APPLICATI Sistema di vettori applicati L'ente matematico costituito da un punto P e da un vettore (libero) V, si dice vettore applicato in P e si denota con (P;V). E comodo rappresentare il vettore

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08 UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza Corso di Disegno Tecnico Industriale per il Corso di Laurea triennale in Ingegneria Meccanica e in Ingegneria Meccatronica Tolleranze

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti]; 1 Esercizio Una ruota di raggio R = 15 cm e di massa M = 8 Kg può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2 = 30 0, ed è collegato tramite un filo inestensibile ad un blocco di

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

FOGLIO 6 - Esercizi Riepilogativi Svolti. Nei seguenti esercizi, si consideri fissato una volta per tutte un riferimento proiettivo per

FOGLIO 6 - Esercizi Riepilogativi Svolti. Nei seguenti esercizi, si consideri fissato una volta per tutte un riferimento proiettivo per Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Edile/Architettura Esercizi per il corso di GEOMETRIA 2 - aa 2007/2008 Docente: Prof F Flamini - Tutore: Dott M Paganin FOGLIO 6 - Esercizi

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli