Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b"

Transcript

1 Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non sino itti. Comincimo con il cso di un vribile, sppimo che se un funzione f è continu in un intevllo [, b] llor esiste l integrle definito f() d, inoltre il teorem fondmentle del clcolo ci permette nche di determinrlo un volt trovt un primitiv dell funzione f. Cos possimo dire se f è continu in tutto l intervllo escluso un estremo, d esempio in (, b]? In tl cso l funzione potrebbe non essere definit in, l ide più nturle è di pssre l ite per che tende d nell funzione f, se quest mmette ite finito llor possimo estendere f in modo continuo e l integrle risult così ben definito. Se invece il ite non esiste oppure è infinito llor non è chiro qule senso dre ll integrle. Un problem nlogo si h se si consider l integrle di un funzione f continu su un intervllo ilitto, d esempio del tipo [, ). Come possimo trttre questi integrli? Si introduce il cosidetto integrle improprio. Si f un funzione continu in (, b] R llor quest si dice integrbile in senso improprio in (, b) se esiste finito + f() d =: f() d. Osservimo che quest definizione h senso dl momento che per ogni è ben definito l integrle f() d. Anlogmente se f è continu in un intervllo del tipo [, b) R llor f si dice integrbile in senso improprio (, b) se esiste finito f() d =: f() d. b Se invece un funzione f è continu in un intervllo del tipo [, ) llor quest si dice integrbile in senso improprio in (, ) se esiste finito + f() d =: + f() d. Possimo estendere quest definizione d integrle funzioni continue in intervlli del tipo (, b), ((, )), in tl cso diremo che l funzione f è integrbile in (, b) ((, + )) se esiste c (, b) (c (, + )) tle che esistono entrmbi gli integrli impropri c f() d e c f() d ( c f() d e

2 + c f() d) in tl cso srà ( + f() d := f() d := c c f() d + f() d + c c f() d f() d) Infine questo concetto di integrle si può estendere l cso di un funzione continu definit in un insieme del tipo [, b] \ {,, n }, in tl cso l funzione f si dirà integrbile in modo improprio in (, b) se sono definiti tutti gli integrli impropri, f() d, 2 f() d, n f() d. L integrle srà dto dll somm di tutti questi integrli. Un nlog definizione si d nel cso di un funzione continu in un intervllo del tipo [, + ) \ {,, n }. Esempio Vogo vedere se esiste l integrle improprio + 0 d. In + 2 tl cso l unico problem è dovuto l ftto che l intervllo di integrzione è ilitto. Applichimo l definizione e studimo + 0 d = + 2 rctn = π + 2. Quindi l integrle improprio esiste ed è proprio ugule π 2. Esempio 2 Vedimo per quli R esiste l integrle improprio 0 d. In questo cso l unico punto dove possono esserci problemi è = 0. Se 0 l funzione risult essere continu nche in 0 perciò esiste l integrle nel senso clssico. Se > 0 bbimo un vero integrle improprio in tl cso si h qundo { + se > d = = se <. Nel cso in cui = bbimo 0 d = log =. + Rissumendo l integrle improprio esiste qundo <. 2

3 Esempio 3 Vedimo per quli R esiste l integrle improprio d. Si h se + Se = bbimo d = { + se < + = se >. + d = log =. + In questo cso l integrle improprio esiste se >. D qunto visto nei due esercizi precedenti deducimo che l funzione non è integrbile in (0, ) per nessun vlore di R. Esercizio Dire se l funzione tn() è integrbile in senso improprio nell intervllo (0, π 2 ). In tutti gli esempi precedenti nel verificre che un funzione fosse integrbile in senso improprio bbimo pplicto l definizione e quindi clcolto il ite, in tl modo nei csi in cui esistev l integrle improprio lo bbimo contempornemente clcolto. In molti csi non è possibile dire esttmente qunto f l integrle improprio però si può dire se questo esiste. Un ide simile si h nell teori delle serie numeriche. Anche in quel cso è difficile clcolre l somm dell serie m ci sono molti strumenti che ci permettono di dire se l serie è non è convergente. Molti di quei criteri vlgono per serie termini positivi, nche in questo cso le cose si semplificno se l funzione f ssume segno costnte. Supponimo che l funzione f si non negtiv. In questo cso possimo osservre che le funzioni h () = f(), d, h 2 () = f(), d sono monotone. Perciò mmettono sempre ite, l uni- co problem è dire se il ite è finito oppure infinito. Queste considerzioni portno l seguente risultto di confronto Proposizione Sino f e g due funzioni continue e non negtive in un intervllo (, b] ([, ), [, b)...) supponimo che esist un costnte A > 0 tle che f() Ag() nell intervllo (, b] ([, ), [, b)...), llor g integrbile in senso improprio = f integrbile in senso improprio. e quindi ovvimente f non integrbile in senso improprio = g non integrbile in senso improprio. 3

4 Per dimostrre questo risultto bst utilizzre le considerzioni ftte precedentemente ed osservre che + f() d A + g() d. Utilizzndo i risultti dell Esempio 3 e l proposizione precedente possimo gevolmente risolvere il seguente esercizio. Esercizio 2 Dire se l funzione + 3 è integrbile in senso improprio nell intervllo (, + ). I risultti dell Proposizione si possono indebolire, inftti come ci spettimo il ftto che un funzione si integrbile o meno dipenderà esclusivmente dl comportmento di quest vicino l punto singolre o ll infinito. Inftti vle l seguente Proposizione 2 Sino f e g due funzioni continue e non negtive in un intervllo (, b] ([, ), [, b)...) supponimo che esist f() + g() = L ( f() b g() = L, f() = L,...) + g() Allor se L = 0 bbimo g integrbile in senso improprio = f integrbile in senso improprio, se L = g non integrbile in senso improprio = f non integrbile in senso improprio infine se L (0, ) g integrbile in senso improprio f integrbile in senso improprio. Il cso più interessnte è il terzo se il ite L è finito e non nullo possimo spostre il problem dell integrbilità di f quello di un funzione g che mgri sppimo trttre più gevolmente. Se il ite è zero o infinito bbimo comunque delle informzioni in un direzione. Dimostrimo questo risultto nel cso L (0, ), i csi ite L = 0 e L = + li lscimo come esercizio. Se il ite vle L possimo dire che esiste sicurmente un vlore δ > 0 tle che L 2 f() g() 3L 2 per ogni (, + δ), quindi L 2 g() f() 3L g() per ogni (, + δ), 2 4

5 dll Proposizione deducimo che f è integrbile in (, + δ) se e solo se g è integrbile in (, + δ). Dl momento che l integrbilità in un intervllo del tipo ( + δ, b) è ssicurt dl ftto che le funzioni f e g sono per ipotesi continue fino gli estremi + δ e b bbimo l tesi. Un volt dimostrto questo risultto possimo risolvere gli esercizi sull integrbilità fcendo uso di funzioni cmpione g di cui già sppimo l integrbilità. Le funzioni, studite negli Esempi 2 e 3, sono molto utili per studire il comportmento vicino 0 e vicino ll infinito. In generle per studire il comportmento vicino d un estremo sinistro o un estremo destro b possimo usre rispettivmente le funzioni ( ) e (b ), queste sono integrbili se e solo se <. Esempio 4 Dire se l funzione è integrbile in senso improprio ( 2 ) nell intervllo (0, ). Osservimo che quest funzione è continu nell intervllo (0, ) vicino gli estremi divent infinit, per vedere se esiste questo integrle improprio scego c (0, ) d esempio c = 2 e studimo l integrbilità negli intervlli (0, 2 ) e ( 2, ), se l funzione è integrbile in entrmbi gli intervlli llor è integrbile in (0, ). Nel primo cso scego come funzione cmpione g() = quest è un funzione integrbile nell intervllo (0, 2 ) ed inoltre f() 0 + g() = 0 + ( 2 ) =, quindi per l Proposizione 2 nche l f è integrbile. Per qunto rigurd l intervllo ( 2, ) scego come funzione cmpione g() = che è integrbile, bbimo f() g() = ( 2 ) =, 2 perciò l f è integrbile in ( 2, ). è integrbile in senso improprio nel- Esercizio 3 Dire se l funzione sin() 2 l intervllo (0, ). Esercizio 4 Dire se l funzione nell intervllo (0, + ). è integrbile in senso improprio è integrbile in senso improprio nel- Esercizio 5 Dire se l funzione cos() l intervllo (0, π 2 ). 5

6 Esercizio 6 Dire per quli β > 0 è integrbile in senso improprio l funzione nell intervllo (2, + ). In questi cso si pplichi l definizione log β clcolndo qundo possibile nche l integrle improprio. Abbimo visto che per le funzioni di segno costnte il criterio del confronto è molto efficce per studire l esistenz dell integrle improprio. Per le funzioni di segno vribile si può utilizzre il seguente risultto. Proposizione 3 Si f C((, b]) ([, b), [, ),... ) llor se f è integrbile in senso improprio nell intervllo (, b] ([, b), [, ),... ) llor nche f è integrbile in senso improprio nello stesso intervllo. Dimostrzione Usndo l definizione si vede subito che se un funzione è somm di due funzioni integrbili llor è integrbile e l integrle è dto dll somm dei due integrli. Più in generle si vede come l proprietà di linerità dell integrle viene mntenut nche per le funzioni integrbili in senso improprio. Questo segue dlle proprietà di linerità del ite. Per dimostrre quest proposizione, considerimo l funzione g() = f() f(), quest funzione è positiv ed inoltre si vede subito che g() 2 f(). Usndo l ipotesi che l funzione f si integrbile e i risultti di confronto vlidi per le funzioni di segno positivo ottenimo che nche l funzione g risulterà essere integrbile così come g() e quindi nche f() = f() g(). Esempio 5 Vogo dimostrre che l funzione f() = sin() è integrbile + 2 in [0, ). Utilizzimo l proposizione precedente, osservimo che f() sin() dl momento che l funzione è integrbile bbimo l tesi. Un funzione f tle che il suo modulo si integrbile si dice ssolutmente integrbile. Mntenendo l nologi con le serie bbimo dunque che ssolut integrbilità (ssolut convergenz) implic l integrbilità (convegenz semplice). Anche in questo cso esistono csi in cui l funzione è integrbile m non ssolutmente integrbile. Un esempio clssico è dto dll funzione f() = sin() che è integrbile in senso improprio in [0, ) m non è integrbile ssolutmente in questo intervllo (vedi Cournt John Vol I pg. 30 e pg. 358). Grzie ll Proposizione 3 possimo dimostrre il seguente risultto vlido per intervlli itti. Proposizione 4 Si f un funzione continu e itt in un insieme [, b] \ {, 2,, n }, llor f è ssolutmente integrbile in (, b). 6

7 Dimostrzione Per ipotesi esiste un costnte M tle che f() M in [, b] \ {, 2,, n }, dl momento che in un intervllo itto un costnte è integrbile l tesi segue dl confronto (Proposizione Lezione I) e dll Proposizione. Esempio 6 L funzione f() = cos( 2 ) è integrbile in un qulsisi intervllo itto. Inftti quest funzione è continu R \ {0} ed è itt in modulo d su tutto R. Esercizio 7 Dire per quli > 0 è integrbile in senso improprio l funzione sin( + 3 ) nell intervllo (0, + ). 2 7

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri Clcolo integrle Integrli su intervlli illimitti Criteri di convergenz Integrli di funzioni non limitte Criteri di convergenz 2 Altri integrli impropri 2 2006 Politecnico di Torino Definizione Considerimo

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Anlisi Mtemtic II - CdL in Ingegneri Informtic ed Elettronic.. 6/7 Integrzione su domini non itti Definizione. Un funzione continu f : [, + [ R si dice integrbile

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Integrzione su domini non itti Definizione.. Un funzione continu f : [, + [ R si dice integrbile in senso generlizzto (brevemente, G-integrbile) se esiste finito

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

Integrazione per parti. II

Integrazione per parti. II Integrzione per prti. II L regol di integrzione per prti f xgx dx [ f xgx] b f xg x dx f, g funzioni derivbili con funzione derivt continu su [, b], pplict ripetutmente, permette in prticolre di integrre

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Integrali impropri di funzioni di una variabile

Integrali impropri di funzioni di una variabile Integrli impropri di funzioni di un vribile. Le funzioni continue Considerimo nel seguito un delle piú importnti ppliczioni del teorem di uniforme continuitá delle funzioni continue su intervlli chiusi

Dettagli

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx Integrli impropri: esercizi AM: Esercizi Discutere l convergenz dei seguenti integrli ed eventulmente clcolrli. d. ( 3) 3 + + d 3. 3 + d 3. d 5. ( + ) 3 e sin d 6. e sin d 7. e cos d 8. d + log 3 9. d

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Integrali impropri. Riccarda Rossi. Analisi I. Università di Brescia. Riccarda Rossi (Università di Brescia) Integrali impropri Analisi I 1 / 48

Integrali impropri. Riccarda Rossi. Analisi I. Università di Brescia. Riccarda Rossi (Università di Brescia) Integrali impropri Analisi I 1 / 48 Integrli impropri Riccrd Rossi Università di Bresci Anlisi I Riccrd Rossi (Università di Bresci) Integrli impropri Anlisi I 1 / 48 (2) α > 0 f (x) = 1 (0, + ). Inftti, x α NON È integrbile in senso improprio

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 7/8 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

ANALISI 1 1 VENTIDUESIMA LEZIONE Integrali impropri

ANALISI 1 1 VENTIDUESIMA LEZIONE Integrali impropri ANALISI 1 1 VENTIDUESIMA LEZIONE Integrli impropri 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

(somma inferiore n esima), (somma superiore n esima).

(somma inferiore n esima), (somma superiore n esima). Clcolo integrle Appunti integrtivi lle dispense di Mtemtic ssistit rgomento 9 (Integrli definiti) e rgomento (Integrli impropri) cur di C.Znco (Il contenuto di questi ppunti f prte del progrmm d esme)

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Foglio N.3. PRIMITIVE. Pn (x) Q m (x) dx

Foglio N.3. PRIMITIVE. Pn (x) Q m (x) dx Integrli di Funzioni Rzionli: Foglio N3 PRIMITIVE Pn (x) Q m (x) dx dove P n (x) e Q m (x) sonopolinomidigrdon ed m rispettivmente Un funzione rzionle il cui denomintore P n (x) è un polinomio di grdo

Dettagli

13 - Integrali Impropri

13 - Integrali Impropri Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 3 - Integrli Impropri Accdemico 25/26 M. Tumminello, V. Lcgnin,

Dettagli

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione Anlisi Rele Esercizi 3 ottobre 2008 ) Tutte le distnze introdotte lezione sono invrinti per trslzioni; ovvero d(x y) = d(x + z y + z) per ogni x y e z. Definire su X = R un metric non invrinte per trslzioni.

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

INTEGRAL IMPROPRI. C.d.L in Fisica Lecce, a.a. 2011/ Le definizioni... pag Criteri di integrabilità... pag Esercizi... pag.

INTEGRAL IMPROPRI. C.d.L in Fisica Lecce, a.a. 2011/ Le definizioni... pag Criteri di integrabilità... pag Esercizi... pag. INTEGRAL IMPROPRI (Cosimo De Mitri). Le definizioni... pg.. Criteri di integrbilità... pg. 6 3. Esercizi... pg. C.d.L in Fisic Lecce,.. / INTEGRALI IMPROPRI (C. De Mitri). Le definizioni I concetti di

Dettagli

Alcune note introduttive alle serie di Fourier.

Alcune note introduttive alle serie di Fourier. Alcune note introduttive lle serie di Fourier. Definizione. Si f : IR IR periodic di periodo e integrbile su [, ]. Diremo coefficienti di Fourier di f i numeri reli = f dx, = IN f cos dx, b = IN e serie

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale SCIENTIA http://www.scientijournl.org/ Interntionl Review of Scientific Synthesis ISSN 2282-2119 Quderni di Mtemtic 215 Mtemtic Open Source http://www.etrbyte.info L integrle di Mengoli Cuchy e il teorem

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

Tutorato di analisi 1

Tutorato di analisi 1 Tutorto di nlisi 1 Alen Kushov Collegio Volt 1 / 8 Introduzione Integrzione ll Riemnn Integrle orientto Linerità dell integrle Teorem fondmentle del clcolo Regole di clcolo Integrli impropri 2 / 8 Integrzione

Dettagli

5.4 Il teorema fondamentale del calcolo integrale

5.4 Il teorema fondamentale del calcolo integrale Esercizi 5.3. Si f : R R un funzione continu, e supponimo che f bbi sintoti obliqui per ±. Provre che f è uniformemente continu in R.. Esibire un funzione f : R R limitt e di clsse C, m non uniformemente

Dettagli

Come ulteriore sviluppo dell integrazione secondo Riemann, vogliamo dare signi cato all integrale per una classe più ampia di funzioni Z f(x)dx I

Come ulteriore sviluppo dell integrazione secondo Riemann, vogliamo dare signi cato all integrale per una classe più ampia di funzioni Z f(x)dx I Cpitolo 8 Integrli impropri 8. Generlità Come ulteriore sviluppo dell integrzione seondo Riemnn, vogo dre signi to ll integrle per un lsse più mpi di funzioni Z I on I intervllo generio (non hiuso e/o

Dettagli

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni Integrle di Riemnn 1 Funzioni integrbili Dto un intervllo non degenere [, b], indichimo con T[, b] l collezione dei sottoinsiemi finiti di [, b] che contengono {, b}. Ogni D T[, b] si chimerà suddivisione

Dettagli

Integrali generalizzati o impropri

Integrali generalizzati o impropri Integrli generlizzti o impropri Ultimo ggiornmento: 9 mrzo 29 Nel seguito considereremo funzioni integrbili secondo Riemnn e per brevità scriveremo R-integrbile (se non lo scriveremo è solo per dimenticnz)..

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

Corso di Laurea in Ingegneria per l Ambiente e il Territorio - sede distaccata di Latina Corso di Analisi Matematica (2 modulo) - a.a.

Corso di Laurea in Ingegneria per l Ambiente e il Territorio - sede distaccata di Latina Corso di Analisi Matematica (2 modulo) - a.a. Corso di Lure in Ingegneri per l Ambiente e il Territorio - sede distcct di Ltin Corso di Anlisi Mtemtic ( modulo) -.. 3/4 APPUNTI INTEGRATIVI SUGLI INTEGRALI GENERALIZZATI Ricordimo che gli integrli impropri,

Dettagli

1. Integrali impropri (o generalizzati)

1. Integrali impropri (o generalizzati) Corso di Lure in Ingegneri delle Teleomunizioni - A.A.- Tri del orso di Anlisi Mtemti L-B. Integrli impropri (o generlizzti) Riferimenti. Brozzi: PCAM, pr..8; Minnj: Mtemti Due, pr.. http://eulero.ing.unibo.it/~brozzi/scam/scam-tr.pdf.

Dettagli

n! A = lim ; 2 2n (n!) 2 (2n)! n = a2 n a 2n a 2 n a 2n 2 2 = A, n n n+ 1 2

n! A = lim ; 2 2n (n!) 2 (2n)! n = a2 n a 2n a 2 n a 2n 2 2 = A, n n n+ 1 2 Il 3 o psso è provto. 4 o psso Conludimo l dimostrzione: Dl o psso bbimo n! ( e n A = lim ; n n n) d ltronde risult, ome è file verifire, e pertnto di pssi 3 e segue 2 2n (n!) 2 (2n)! n = 2 n 2n 2, 2 π

Dettagli

Paolo Perfetti, Dipartimento di matematica, Università degli Studi di Roma Tor Vergata, facoltà di Ingegneria

Paolo Perfetti, Dipartimento di matematica, Università degli Studi di Roma Tor Vergata, facoltà di Ingegneria Anlisi I per Ingegneri Online, Sessione invernle terz prov scritt del 3 29 A.A. 28/29 Si possono consultre libri, ppunti, note etc. Nome(Stmptello) Cognome(Stmptello) Mtricol ) Disegnre il grfico dell

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

Calcolo integrale in due e più variabili

Calcolo integrale in due e più variabili Clcolo integrle in due e più vribili 9 dicembre 2010 1 Definizione di integrle Il primo psso st nell definizione e determinzione dell integrle per funzioni due vribili prticolrmente semplici: le funzioni

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

L integrale di Riemann

L integrale di Riemann L integrle di Riemnn Riccrd Rossi Università di Bresci Anlisi B Riccrd Rossi (Università di Bresci) L integrle di Riemnn Anlisi B 1 / 64 Motivzioni: clcolo di un re Si f : [, b] R continu e positiv. Problem

Dettagli

1 Definizione di integrale di Riemann 1. 2 Condizioni di esistenza dell integrale di Riemann 3. 3 Proprietà dell integrale di Riemann 4

1 Definizione di integrale di Riemann 1. 2 Condizioni di esistenza dell integrale di Riemann 3. 3 Proprietà dell integrale di Riemann 4 DEFINIZIONE DI INTEGRALE DI RIEMANN Integrle di Riemnn Indice Definizione di integrle di Riemnn Condizioni di esistenz dell integrle di Riemnn 3 3 Proprietà dell integrle di Riemnn 4 4 Clcolo dell integrle

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Introduzione al calcolo integrale

Introduzione al calcolo integrale Introduzione l clcolo integrle Indice: Integrle di Riemnn. Proprietà delle funzioni integrbili. Continuità dell funzione integrle. Teorem dell Medi. Teorem Fondmentle del Clcolo Integrle. Metodi di integrzione.

Dettagli

Matematica A, Area dell Informazione. Complementi al testo

Matematica A, Area dell Informazione. Complementi al testo 1 Preinri Mtemtic A, Are dell Informzione.. 2001-2002, corso prof. Brdi Complementi l testo Proposizione 1 (Proprietà crtteristiche di sup e inf) Si A R un insieme non vuoto e si x R. Allor x = sup A se

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Integrali impropri. Vogliamo definire e calcolare f (x)dx quando. I y. f (x)

Integrali impropri. Vogliamo definire e calcolare f (x)dx quando. I y. f (x) Integrli impropri Voglimo definire e clcolre f (x)dx qundo I I è illimitto, I è limitto, m f non è limitt su I. y y f (x) f (x) x x c Pol Gervsio - Anlisi Mtemtic - A.A. /2 Integrli impropri cp0.pdf Integrle

Dettagli

Matematica generale CTF

Matematica generale CTF L integrle di Riemn 2 dicembre 2015 Somme di Drboux Considerimo con un funzione sempre positiv, limitt (non necessrimente continu) e definit su un intervllo: f : [, b] R e cerchimo di clcolre l re dell

Dettagli

Argomento 10 Integrali impropri

Argomento 10 Integrali impropri Premess Argomento Integrli impropri Nell Arg. 9 è stt introdott l nozione di integrle definito f() d per funzioni ontinue f : [, b] R. Un derog ll ontinuità di f è nhe stt introdott, m solo per onsiderre

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

1 Integrali impropri di funzioni continue

1 Integrali impropri di funzioni continue ntegrli impropri di funzioni continue. ntegrli impropri su intervlli semiperti Definizione Dt un funzione continu f : [, b) R, con b +, si dice che f è integrbile se esiste finito il t b f(x) dx ed in

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx.

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx. Cpitolo 6 Serie di Fourier 6.1. Introduzione Un polinomio trigonometrico di grdo N nell intervllo [, π] è un funzione g(x), periodic di periodo, dell form g(x) = N n= N c n e inx per un qulche scelt delle

Dettagli

COMPLEMENTI SUGLI INTEGRALI DEFINITI. A. Figà Talamanca

COMPLEMENTI SUGLI INTEGRALI DEFINITI. A. Figà Talamanca COMPLEMENTI SUGLI INTEGRALI DEFINITI A. Figà Tlmnc 27 ottobre 2010 2 0.1 Introduzione C è un modo pprentemente semplice ed intuitivo per introdurre l integrle (definito) di un funzione f definit su un

Dettagli

Integrale: Somma totale di parti infinitesimali

Integrale: Somma totale di parti infinitesimali I problemi del Clcolo Ininitesimle (Newton, Method o Fluxions, 67) o Problem. (Derivt) Dt l lunghezz dello spzio percorso in ogni istnte di tempo, determinre l velocità in ogni istnte. 2 o Problem. (Integrle)

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

INTEGRALI IMPROPRI. C.d.L in Fisica Lecce, a.a. 2014/ Le definizioni... pag Criteri di integrabilità... pag Esercizi... pag.

INTEGRALI IMPROPRI. C.d.L in Fisica Lecce, a.a. 2014/ Le definizioni... pag Criteri di integrabilità... pag Esercizi... pag. INTEGRALI IMPROPRI (Cosimo De Mitri). Le definizioni... pg.. Criteri di integrbilità... pg. 6. Esercizi... pg. C.d.L in Fisic Lecce,.. 4/5 INTEGRALI IMPROPRI (C. De Mitri). Le definizioni I concetti di

Dettagli

Integrazione definita

Integrazione definita Integrzione definit Si [,b] R un intervllo chiuso e limitto. Si f : [,b] R limitt. Def. Trpezoide di f sull intervllo [,b] è l regione di pino delimitt dll sse =, dlle rette = e = b e dl grfico di f. Viene

Dettagli

Un introduzione alle serie di Fourier

Un introduzione alle serie di Fourier Cpitolo 3 Un introduzione lle serie di Fourier 3.1 Considerzioni preinri Dto un sistem numerbile di funzioni φ 1 (x),...,φ n (x),... definite su un intervllo [, b] dir e un funzione f(x): [, b] R (C),

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

DISPENSE DI ANALISI MATEMATICA. Indice

DISPENSE DI ANALISI MATEMATICA. Indice DISPENSE DI ANALISI MATEMATICA ANNAMARIA MONTANARI Indice. Integrle di Riemnn.. Proprietà elementri dell integrle di Riemnn 5.2. Teorem fondmentle del clcolo integrle. Primitive 6.3. Integrle generlizzto

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

Integrali definiti (nel senso di Riemann)

Integrali definiti (nel senso di Riemann) Integrli definiti (nel senso di Riemnn) Problem: cos è l re di un figur pin? come clcolrl? Grficmente concetto intuitivo ed evidente. Tecnicmente ci sono definizioni e formule d hoc per le figure elementri.

Dettagli

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1]

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1] Veric di Mtemtic su Integrle Denito, Integrzione Numeric e clcolo di ree []. Si consideri il seguente integrle denito: Determinre il vlore estto di I; I = 2 ( e x )dx. il vlore estto dell're A T del trpezoide

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

II-8 Integrale di Riemann

II-8 Integrale di Riemann II-8 INTEGRALE DI RIEMANN DEFINIZIONE DI INTEGRALE DI RIEMANN II-8 Integrle di Riemnn Indice Definizione di integrle di Riemnn Condizioni di esistenz dell integrle di Riemnn 3 3 Proprietà dell integrle

Dettagli

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale Pietro Bldi Successioni e serie di funzioni Testi di riferimento: W. Rudin, Principi di Anlisi Mtemtic, McGrw-Hill Libri Itli; N. Fusco, P. Mrcellini, C. Sbordone, Anlisi Mtemtic Due, Liguori Editore;

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a Anlisi Mtemtic per Bio-Informtici Esercitzione 3.. 27-28 Dott. Simone Zuccher 28 Febbrio 28 Not. Queste pgine potrebbero contenere degli errori: chi li trov è pregto di segnlrli ll utore (zuccher@sci.univr.it).

Dettagli

Oscillatore armonico unidimensionale

Oscillatore armonico unidimensionale Oscilltore rmonico unidimensionle Autovlori ed utofunzioni L hmiltonin di un oscilltore rmonico unidimensionle si scrive Definendo le vribile dimensionli L eq.) si scrive H = m p + m ω x ) = m h d dx +

Dettagli

Analisi Matematica 1 Venticinquesima lezione[1cm]integrale di Riemann 5 marzo (cont.) / 20

Analisi Matematica 1 Venticinquesima lezione[1cm]integrale di Riemann 5 marzo (cont.) / 20 Anlisi Mtemtic 1 Venticinquesim lezione Integrle di Riemnn (cont.) prof. Cludio Sccon Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

ESERCIZI SUGLI INTEGRALI IMPROPRI

ESERCIZI SUGLI INTEGRALI IMPROPRI ESERCIZI SUGLI INTEGRALI IMPROPRI cur di Michele Scgli RICHIAMI TEORICI INTEGRALI IMPROPRI NOTEVOLI L integrle CONVERGE dx, < DIVERGE per

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milno orso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it Integrli di line di prim specie (Integrli di densità lungo cmmini non orientti) Gennio 213 Indice 1 Integrli di

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri.. 2008/2009 Integrzione () 29 mggio 2009 1 / 18 Integrzione Problem: pprossimre integrli definiti del tipo: f (x)dx,

Dettagli

CORSO DI CALCOLO E BIOSTATISTICA. A.A APPUNTI SUGLI INTEGRALI

CORSO DI CALCOLO E BIOSTATISTICA. A.A APPUNTI SUGLI INTEGRALI CORSO DI CALCOLO E BIOSTATISTICA. A.A. 212-213. APPUNTI SUGLI INTEGRALI Il testo che segue contiene brevi ppunti reltivi lle lezioni svolte sull teori elementre dell integrzione di funzioni reli di un

Dettagli

Formulario di Analisi Matematica 1

Formulario di Analisi Matematica 1 Formulrio di Anlisi Mtemtic Indice degli rgomenti Punti interni, isolti, di ccumulzione e di frontier Alcune costnti Proprietà delle potenze Proprietà degli esponenzili Proprietà dei logritmi Proprietà

Dettagli

Funzioni a variazione limitata

Funzioni a variazione limitata Cpitolo 1 Funzioni vrizione limitt 1.1 Il problem delle primitive di funzioni L 1 Il problem dell ricerc delle primitive di un ssegnt funzione f : I R con I = [, b] intervllo limitto, cioè le soluzioni

Dettagli

Note del corso di Laboratorio di Programmazione e Calcolo: Integrazione numerica

Note del corso di Laboratorio di Programmazione e Calcolo: Integrazione numerica Corso di lure in Mtemtic SAPIENZA Università di Rom Note del corso di Lbortorio di Progrmmzione e Clcolo: Integrzione numeric Diprtimento di Mtemtic Guido Cstelnuovo SAPIENZA Università di Rom Indice Cpitolo

Dettagli

Elenco dei teoremi dimostrati a lezione

Elenco dei teoremi dimostrati a lezione Elenco dei teoremi dimostrti lezione Muro Sit murosit@tisclinet.it In queste pgine si riport l elenco dei teoremi dimostrti lezione. 1 1 Principio di induzione. 1. Utilizzndo il principio di induzione

Dettagli

Appunti ad uso degli studenti del Corso di Matematica per CTF

Appunti ad uso degli studenti del Corso di Matematica per CTF Appunti d uso degli studenti del Corso di Mtemtic per CTF Prof. Sergio Steffè, AA2016/17 Sommrio Questi ppunti sono scritti su misur per gli studenti del corso di Mtemtic per CTF dell Anno Accdemico 2016/17,

Dettagli

Calcolo Integrale. F (x) = f(x)?

Calcolo Integrale. F (x) = f(x)? 3 Clcolo Integrle Nello studio del clcolo differenzile si è visto come si può ssocire d un funzione l su derivt. Il clcolo integrle si occup del problem inverso: dt un funzione f è possibile determinre

Dettagli

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrle secondo Riemnn 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/

Dettagli

1 Integrazione generalizzata

1 Integrazione generalizzata Anlisi Mtemtic II Integrzione generlizzt Un funzione loclmente integrbile f : [, b[ R (con < b + ), si dice essere integrbile (ll Riemnn) su [, b[ in senso generlizzto (d or in poi scriveremo solo Integrbilità

Dettagli

Dimostrazione del teorema di Gauss Green nel piano

Dimostrazione del teorema di Gauss Green nel piano imostrzione del teorem di Guss Green nel pino Gli eventuli lettori sono pregti di segnlrmi gli eventuli errori di stmp. Grzie! L.V. Ricordimo che: dominio è l chiusur di un perto; dominio normle regolre

Dettagli

Integrale e Primitiva

Integrale e Primitiva Alm Mter Studiorum Università di Bologn FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Lure in Mtemtic Integrle e Primitiv Tesi di Lure in Anlisi Mtemtic Reltore: Chir.mo Prof. Ermnno Lnconelli

Dettagli