3. 1. Capitolo 4. Reti logiche. Logica e Reti logiche. Il modello strutturale delle reti logiche. 4.1 Funzioni, espressioni e schemi logici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3. 1. Capitolo 4. Reti logiche. Logica e Reti logiche. Il modello strutturale delle reti logiche. 4.1 Funzioni, espressioni e schemi logici"

Transcript

1 Cpitolo 4 Reti logiche 4 - Funzioni, espressioni e schemi logici 42 - Alger di commutzione 43 - Fmiglie logiche 4 Funzioni, espressioni e schemi logici Tutti gli uomini sono mortli 2 Socrte è un uomo Logic e Reti logiche 3 Socrte è mortle Rete logic -Modello mtemtico che ssume come primitive lcune semplici modlità di elorzione di segnli inri e deduce d queste in modo rigoroso qule struttur soddisf un dto comportmento, qule comportmento h un dt struttur Il modello strutturle delle reti logiche Configurzioni di n it che codificno i simoli di un insieme I i i n Configurzioni di k it che codificno i simoli di un insieme S Rete logic sequenzile sincron retrozioni con FF D y y k F: I S U G: I S S memori memori Y Y k Rete logic sequenzile sincron retrozioni dirette u u m Configurzioni di m it che codificno i simoli di un insieme U Configurzioni di k it che codificno i simoli di un insieme S Rete logic comintori nessun retrozione 3

2 Rete logic comintori Struttur & Comportmento di un rete logic comintori i i n F: I U sistem di m funzioni di n vriili inrie u = F (i,, i n ) u m = F m (i,, i n ) Rete logic comintori - I vlori dei segnli d uscit dipendono solo di vlori contempornei dei segnli d ingresso Tell dell verità x x 2 x 3 x n z= F(x,, x n ) Espressione operzioni logiche porte logiche sintesi nlisi x x 2 x 3 x n Struttur comintori G 3 G 2 z G G k Descrizione mtemtic del comportmento delle reti comintorie Vriili inrie: indipendenti e dipendenti Funzioni oolene: complete e incomplete Operzioni logiche: simoli e regole Espressioni logiche: funzioni e schemi Funzioni oolene 3 2

3 Funzioni di vriili inrie Funzione complet di n vriili inrie z = F(x, x 2,, x n ) Insieme di 2 n coppie ordinte {x, z x B n, z B} formte d un configurzione di vlori delle vriili indipendenti x i e dl corrispondente vlore dell vriile dipendente z Il numero di distinte funzioni di n vriili inrie è finito 2 n Φ (n) = 2 i i n rete comintori u = F (i, i 2,, i n ) u m =F m (i, i 2,, i n ) 4 funzioni di vriile, 6 funzioni di 2 vriili, 256 funzioni di 3 vriili, funzioni di 4 vriili, ecc 2 n righe Telle dell verità Tell dell verità - Descrizione tellre di un funzione di vriili inrie n+ colonne x x 2 x n F(x, x 2,, x n ) Funzioni incomplete Funzione incomplet o non completmente specifict Il dominio è un sottoinsieme di B n Esempio: BCD 7 segmenti x f f 3 f f 2 x x f Funzioni di un e di due vriili f 5 4 funzioni di un vriile f 3 f 5 f 2 f f, f 5 : costnti e f 3, f 5 : identità o uffer f 2, f : not f f 4 f 7 f 8 f, f 3 : costnti e f : identità o uffer f 2 : not f 9 f 6 f : nd f 4 : nnd f 7 : or f 8 : nor f 9 : equivlence f 6 : ex-or funzioni complementri f 3 f 2 f f 4 6 funzioni di due vriili f 3 : x = implic x = f : x = implic x = f 2 : complemento di f 3 f 4 : complemento di f Porte logiche Strutture e comportmenti elementri (3) Strutture e comportmenti elementri (4) Il gte or Il gte nd Conttti in prllelo I I2 AB perto perto perto Conttti in serie I I2 AB A I B perto chiuso chiuso perto perto perto chiuso perto chiuso perto chiuso perto A B chiuso chiuso chiuso Gte o port chiuso perto logic perto - Struttur formt I2 d uno o chiuso chiuso chiuso I I2 più interruttori disposti Buffer,Not, in serie/prllelo I comndi And, di zionmento Or, Nnd, Nor, provengono Ex-or, Ex-nor dll esterno Il gte nor e le Il not loro elettronico denominzioni possono essere scmite senz che si modifichi l relzione di cus/effetto x I L z x 2 + E + E +E volt V u V u oppure V i V volt u NB Gli interruttori V V 2 V u V in prllelo possono L L H volt V + E essere più di due oppure i L H L V2 + E H L L +E volt H H L 3 3

4 Dulità tr nd e or () Logic positiv Dulità tr nd e or (2) Logic positiv I I2 AB I I2 AB I I2 AB I I2 AB Il gte nd Il gte or Il gte or Il gte nd Due differenti strzioni! {perto =, chiuso = } {perto =, chiuso = } Due differenti strzioni! {perto =, chiuso = } {perto =, chiuso = } A I Conttti in serie I2 B I I2 AB perto perto perto perto chiuso perto chiuso perto perto chiuso chiuso chiuso Conttti in prllelo A I I2 B I I2 AB perto perto perto perto chiuso chiuso chiuso perto chiuso chiuso chiuso chiuso Dulità tr ex-or e ex-nor (3) Logic positiv I I2 AB {lto =, sso = } {lto =, sso = } I I2 AB {perto =, chiuso = } {perto =, chiuso = } Operzioni logiche devitore D devitore D2 D D2 AB lto lto perto sso lto chiuso lto sso chiuso sso sso perto 3 4

5 Funzioni e operzioni F = F è descritt d * opertore Operzioni un operndo Operzioni due operndi Identità : z = x Regole: Funzione: x z Relizzzione: = = x z F(x) = *(x) F(x) = (x)* Esempi: rdice logritmo potenz derivt modulo Operzioni logiche F(x,y) = *(x,y) F(x,y) = x* y Esempi: ddizione sottrzione moltipliczione divisione Min, Mx Complementzione : x, x, x Regole: Funzione: x z Relizzzione: = = x z = : il complemento di vle Somm logic: x + y, x y + = + = x + = z + = y Somm modulo due: x y = = x = z = y Prodotto logico: x y, xy, x y = = x = z = y Equivlenz: x y = = x = z = y 3 5

6 Nnd (operzione di Shffer): z = x y Operzioni e Espressioni = = x = z = y f (x) = x f 2 (x) = x f 7 (x,y) = x + y f 8 (x,y) = x y f (x,y) = x y f 4 (x,y) = x y f 6 (x,y) = x y f 9 (x,y) = x y Nor (operzione di Pierce): z = x y = = x = z = z Espressione logic - String formt d costnti, it, opertori logici e prentesi Esempi: (x y) (z w) + (c) (x y) Vlutzione di un espressione Vlutzione di un espressione di n vriili per un n-pl di vlori - Si sostituisce d ogni vriile il vlore che le compete 2 - Prtendo dlle prentesi più interne si sostituisce ogni operzione con il suo risultto fino d ottenere o l costnte o l costnte Esempio: E(,,c) = +(c) per =, =, c= = +() = + = N di vlutzioni - Un espressione di n vriili può essere vlutt in 2 n modi diversi Espressioni e Funzioni Le 2 n vlutzioni di un espressione E(x, x 2,, x n ) creno 2 n coppie x, z {x, z x B n, z B} Esempio: E(,,c) = +(c) c E E(,,) = +() = E(,,) = +() = E(,,) = +() = E(,,) = +() = E(,,) = +() = E(,,) = +() = E(,,) = +() = E(,,) = +() = T) Ogni espressione descrive un e un sol funzione complet 3 6

7 Espressioni e Schemi logici T2) Ogni espressione descrive un struttur formt d gte connessi in serie e/o in prllelo Per individure lo schem descritto d un espressione: - si prte dlle prentesi più interne e si trcci il simolo del gte corrispondente ll operzione, collegndone gli ingressi i segnli esterni; 2 - si procede in modo nlogo con le ltre coppie di prentesi, considerndo vi vi come ingressi dei nuovi gte nche le uscite di quelli già trcciti +(c) Esempi c strzione m i i(t +Δt) = I(t) Δt I I = f(m,,i) = m + i ((() + ) c) c Alim m i NB - Lo schem logico di un espressione non può vere segnli in retrozione (l uscit di ogni gte dipende d segnli d ingresso e/o d uscite di gte disposti monte ) I 3 7

8 Funzioni di n vriili F Equivlenz tr espressioni Espressioni equivlenti - Due espressioni E, E 2 sono equivlenti, e si scrive E = E 2, se e solo se descrivono l stess funzione Espressioni di F Espressioni di n vriili Metodi per dimostrre l equivlenz: induzione perfett mnipolzione lgeric Proprietà T3) proprietà commuttiv (+,,,,, ) * = * T4) proprietà ssocitiv (+,, ) ( * ) * c = * ( * c) = * * c T5) complementi: (x + y) = x y (x y) = x y NB il pllino! (x y) = x y Insiemi di gte () Insieme AND, OR, NOT - Disponendo opportunmente in serie/prllelo soltnto questi tre tipi di gte è possiile ottenere il comportmento di tutti gli ltri z = ( ) = z = ( ) = z = + = i i 2 inftti: ( ) z = ( + ) = z = + = ( ) Insiemi di gte (2) Insieme EX-OR, AND - Disponendo opportunmente in serie/prllelo soltnto questi due tipi di gte è possiile ottenere il comportmento di tutti gli ltri z = = inftti z = (() ( )) = + 3 8

9 Insiemi di gte (3) NAND - Disponendo opportunmente in serie/prllelo solo questo tipo di gte è possiile ottenere il comportmento di tutti gli ltri z = = z = (( ) ) = Clcolo delle proposizioni Assegnt un qulsisi funzione di vriili inrie, è possiile descriverl con un espressione contenente solo le operzioni eseguite di gte? Proposizione -Frse o ver o fls, formt d ffermzioni o vere o flse unite di connettivi o, e, non z = = + Dimostrzione per induzione perfett + Si l proposizione il it vle L frse F(x,y) vle se o x vle o y vle descrive l funzione or è equivlente ll proposizione o x o y (ver per,, e fls per ) è equivlente ll espressione x + y vero flso e o + non x x f 3 Sintesi di un delle impliczioni x x x x (x x ) non (x e non x ) non x o x x + x se e solo se x = e x = f 3 = x x non se e solo se x = e x = se e solo se o x = o x = Sintesi di un SELETTORE due vie A I I U I I A o non A e I oppure A e I A I + A I U 3 9

10 Algere inrie Alger inri - Sistem mtemtico formto d un insieme di opertori definiti ssiomticmente ed tti descrivere con un espressione ogni funzione di vriili inrie Clcolo delle proposizioni Crisippo (25 c) {vero, flso} {e, o, non} G Boole (854) tre opertori Alger di commutzione {, }{+,, } tre opertori C Shnnon (938) Alger del nnd {, }{ } un opertore Alger del nor {, }{ } un opertore Alger linere {, }{, } due opertori 3

Capitolo 4. Gate. Il modello. Reti logiche Funzioni, espressioni e schemi logici Algebra di commutazione Famiglie logiche

Capitolo 4. Gate. Il modello. Reti logiche Funzioni, espressioni e schemi logici Algebra di commutazione Famiglie logiche Cpitolo 4 Gte 4 - Funzioni, espressioni e schemi logici 42 - lger di commutzione 43 - Fmiglie logiche Il modello Reti logiche Configurzioni di n it che codificno i simoli di un insieme I i i n F: I S U

Dettagli

Capitolo 4. Reti logiche. Logica e Reti logiche. Reti logiche. 4.1 Funzioni, espressioni e schemi logici

Capitolo 4. Reti logiche. Logica e Reti logiche. Reti logiche. 4.1 Funzioni, espressioni e schemi logici Cpitolo 4 Reti logiche 4 - Funzioni, espressioni e schemi logici 42 - lger di commutzione 43 - Fmiglie logiche 4 Funzioni, espressioni e schemi logici Tutti gli uomini sono mortli 2 Socrte è un uomo Logic

Dettagli

Funzioni, espressioni e schemi logici

Funzioni, espressioni e schemi logici Funzioni, espressioni e schemi logici Il modello strutturale delle reti logiche Configurazioni di n bit che codificano i simboli di un insieme I i i n F: I S U u u m Configurazioni di m bit che codificano

Dettagli

Algebra di commutazione. Schemi logici e Espressioni. Espressioni. Equivalenze notevoli. Teoremi di equivalenza

Algebra di commutazione. Schemi logici e Espressioni. Espressioni. Equivalenze notevoli. Teoremi di equivalenza lger di commutzione 4.2 lger di commutzione ) Costnti: 0, 2) Operzioni: somm logic (+) prodotto logico (.) complementzione ( ) 3) Postulti: 0 + 0 = 0 0. 0 = 0 0 = + 0 =. 0 = 0 = 0 0 + = 0. = 0 + =. = 4)

Dettagli

George Boole ( )

George Boole ( ) Mtemtic Alger di Boole Cpitolo 5 Ivn Zivko George Boole (1815-1864) Mtemtico inglese del dicinnovesimo secolo, ffrontò in modo originle prolemi di logic. Le sue teorie trovno forte ppliczione un secolo

Dettagli

Capitolo 5 Reti combinatorie 5.1. Il problema della sintesi. Progetto logico di circuiti combinatori

Capitolo 5 Reti combinatorie 5.1. Il problema della sintesi. Progetto logico di circuiti combinatori Cpitolo 5 Reti comintorie 5. - Il prolem dell sintesi 5.2 - Reti di costo minimo 5.3 Il metodo delle mppe 5.4 Reti progrmmili 5. Il prolem dell sintesi Funzione ssegnt Il prolem dell sintesi Espressioni

Dettagli

Capitolo 5 Reti combinatorie. 5.1 Il problema della sintesi. Progetto logico di circuiti combinatori. Obiettivi del progetto logico

Capitolo 5 Reti combinatorie. 5.1 Il problema della sintesi. Progetto logico di circuiti combinatori. Obiettivi del progetto logico Cpitolo 5 Reti comintorie 5. Il prolem dell sintesi 5.2 Reti di costo minimo 5.3 Il metodo delle mppe 5.4 Reti Nnd ed Nor 5.5 Reti progrmmili 5. Il prolem dell sintesi Funzione ssegnt Oiettivi del progetto

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ;

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ; Cpitolo Rdicli Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli qundo è possibile clcolrle) 9 9 9 00 m ) n ) o ) 0, 0 0, 09 0, 000 9 0, Determin le seguenti rdici

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

2 Numeri reali. M. Simonetta Bernabei & Horst Thaler

2 Numeri reali. M. Simonetta Bernabei & Horst Thaler 2 Numeri reli M. Simonett Bernei & Horst Thler Numeri interi positivi o Nturli 0 1 2 3 4 Con i numeri Nturli è sempre possiile fre l ddizione e l moltipliczione p.es.: 5+2 = 7; 3*4 = 12; m non sempre l

Dettagli

si considerino le seguenti implementazioni dell algoritmo di ricerca di un elemento all interno di un vettore v: 1) 2)

si considerino le seguenti implementazioni dell algoritmo di ricerca di un elemento all interno di un vettore v: 1) 2) Fondmenti di Informtic Ingegneri Meccnic, Elettric, Gestionle Prov scritt del 22 Giugno 2004 NOME MATRICOLA Esercizio 1 Supponendo l seguente definizione del tipo vettore: #define MAX_DIM 256 typedef int

Dettagli

Circuiti combinatori notevoli e circuiti aritmetici

Circuiti combinatori notevoli e circuiti aritmetici Architettur degli Elortori e delle Reti Circuiti comintori notevoli e circuiti ritmetici F. Pedersini Diprtimento di Informtic Università degli Studi di Milno L 5 1 Comprtore COMPARATORE v Confront 2 prole

Dettagli

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato Università degli studi di Cgliri CORSO ANALISI MATEMATICA 1 A.A. 2015/2016 Docente: Monic Mrrs 1 Anlisi Mtemtic 1 Testo consiglito con elementi di geometri e lgebr linere. M. Brmnti, C.D. Pgni, S. Sls

Dettagli

Circuiti combinatori notevoli e circuiti aritmetici

Circuiti combinatori notevoli e circuiti aritmetici Architettur degli Elortori e delle Reti Lezione 5 Circuiti comintori notevoli e circuiti ritmetici F. Pedersini Diprtimento di Scienze dell Informzione Università degli Studi di Milno L 5 1 Comprtore COMPARATORE!

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

Scheda per il recupero 2

Scheda per il recupero 2 Sched A Ripsso Sched per il recupero Numeri rzionli e introduzione i numeri reli Definizioni principli DOMANDE RISPOSTE ESEMPI Che cos è un frzione? Qundo un frzione si dice ridott i minimi termini? Un

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F() è un primitiv di f(), llor le funzioni F() + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(). Precismente:! se F() è un primitiv di f (), llor nche F() +

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F(x) è un primitiv di f(x), llor le funzioni F(x) + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(x). Precismente:! se F(x) è un primitiv di f (x), llor nche

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva.

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva. Approssimzione numeric di: Motivzioni. Integrzione numeric I(f) = f(x)dx. Non sempre si riesce trovre l form esplicit dell primitiv. Vlutzione costos dell primitiv. L funzione d integrre può essere dt

Dettagli

PROPRIETA DELLE POTENZE FUNZIONE ESPONENZIALE

PROPRIETA DELLE POTENZE FUNZIONE ESPONENZIALE PROPRIETA DELLE POTENZE Sino,b,s,t R,b Vlgono le seguenti proprietà: ) s t = s t Il prodotto di potenze dell stess bse è un potenz dell stess bse che h come esponente l somm degli esponenti ) s s t = t

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Propagazione degli Errori e regressione lineare. Note e consigli d uso. -Termine covariante -- estrapolazione e/o interpolazione

Propagazione degli Errori e regressione lineare. Note e consigli d uso. -Termine covariante -- estrapolazione e/o interpolazione Propgzione degli Errori e regressione linere Note e consigli d uso -Termine covrinte -- estrpolzione e/o interpolzione Qundo devo usre il termine di covrinz nell propgzione? Qundo l errore delle vriili..

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI Indice cpitolo Insiemi ed elementi di logic... 7 8 Insiemi... Operzioni con gli insiemi... 8 Introduzione ll logic... 9 Connettivi e tvole di verità... Espressioni proposizionli... 0 Predicti e quntifictori...

Dettagli

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi Linguggi di Progrmmzione Corso C Prte n.5 Automi Stti Finiti Nicol Fnizzi (fnizzi@di.uni.it) Diprtimento di Informtic Università degli Studi di Bri Automi Stti Finiti Dto un lfeto X, un utom stti finiti

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI I NUMERI REALI E I RADICALI Recupero RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI COMPLETA Risolvi l disequzione ( ). ( ) ( ) ( ) Elimin le prentesi clcolndo il prodotto. Applic l regol

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

1 Lavoro sperimentale (di Claudia Sortino)

1 Lavoro sperimentale (di Claudia Sortino) 1 Lvoro sperimentle (di Cludi Sortino) Prtendo d un nlisi epistemologic del prolem, ho preprto un test che ho successivmente proposto due quinte clssi di un istituto industrile. QUESTIONARIO SULL INTEGRAZIONE

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

SCOMPOSIZIONE IN FATTORI

SCOMPOSIZIONE IN FATTORI Sintesi di Mtemtic cur di Griell Grzino SCOMPOSIZIONE IN FATTORI ) Rccoglimento fttore comune ( Applicile d un polinomio di un numero qulunque di termini purchè i termini presentino lmeno un letter o un

Dettagli

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se Cpitolo 6 Integrli L opertore derivt D ssoci d un funzione f l su derivt: Df f 0 Ci ciedimo se è possiile invertire quest operzione, vle dire trovre un funzione l cui derivt si un funzione ssegnt Definizione

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accdemico 07/8 Diprtimento di Scienze Mtemtic, Informtiche e Fisiche Corsi di Lure in Informtic e in IBW Esercizi di Anlisi Mtemtic Esercizi del 7 ottobre 07. Nell

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Programma di matematica Prof.ssa Tacchi Lucia Anno scolastico 2017/2018 classe I A

Programma di matematica Prof.ssa Tacchi Lucia Anno scolastico 2017/2018 classe I A Isi E. Fermi Lucc Progrmm di mtemtic Prof.ss Tcchi Luci nno scolstico 7/8 clsse I Gli insiemi numerici i numeri nturli i numeri interi i numeri rzionli ssoluti i reltivi. Potenze nche con esponente intero

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Modulo o "valore assoluto" Proprietà del Valore Assoluto. Intervalli

Modulo o valore assoluto Proprietà del Valore Assoluto. Intervalli Modulo o "vlore ssoluto" Dto x definimo modulo o vlore ssoluto di x il numero rele positivo x se x 0 x = x se x < 0 Es. 5 è 5. 2.34 è 2.34 Dl punto di vist geometrico x rppresent l distnz di x d 0. x x

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Ortogonalità di funzioni

Ortogonalità di funzioni Cpitolo 0 Ortogonlità di funzioni 01 Funzioni linermente indipendenti e funzioni ortogonli Si (, b) un intervllo dell sse rele Si dice le n + 1 funzioni φ 0 (x), φ 1 (x),, φ n (x), definite in (, b), sono

Dettagli

Numerica e aritmetica dei calcolatori. Introduzione

Numerica e aritmetica dei calcolatori. Introduzione NUC Cpitolo Ivn Zivko Introduzione Un mtrice si può descrivere come un tbell ordint di elementi, ognuno dei quli h un posizione ben precis. M 4 7 5 8 3 6 9 NUC Docente: Ivn Zivko Introduzione Se il numero

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Esercizi di consolidamento

Esercizi di consolidamento Esercizi di consolidmento Stilisci per quli vlori delle lettere le seguenti frzioni lgeriche hnno significto. esercizio guidto. L frzione h significto se il denomintore è diverso d zero e ciò ccde se 6¼

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

U.D. N 13 Le inequazioni ad una incognita

U.D. N 13 Le inequazioni ad una incognita Unità Didttic N Le inequzioni d un incognit 5 U.D. N Le inequzioni d un incognit 0) Proprietà delle disuguglinze fr numeri reli reltivi 0) Inequzioni e loro proprietà 0) Inequzioni rzionli intere di primo

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.04) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Le Matrici. 001 ( matrice unità)

Le Matrici. 001 ( matrice unità) Le Mtrici Un mtrice è un tbell di numeri o più in generle di elementi disposti quindi secondo righe e colonne. Le mtrici si indicno con le lettere miuscole dell lfbeto, gli elementi con quelle minuscole

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

ITIS GALILEO FERRARIS

ITIS GALILEO FERRARIS ITIS GLILEO FERRRIS Sn Giovnni Vldrno rezzo lunno: Giusti ndre Clsse: IV specilizzzione elettronic e telecomuniczioni L dimostrzione è nelle pgine che seguono Il prolem di Dicemre 3 Si consideri un generic

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.4) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU Unità logio-ritmeti (ALU) Unità logio-ritmeti Arhitetture dei Cloltori (lettere A-I) E l prte del proessore he svolge le operzioni ritmetio-logihe Potenz di lolo del proessore Insieme di iruiti omintori

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II Ingegneri Elettric Politecnico di Torino Luc Crlone ControlliAutomticiI LEZIONE II Sommrio LEZIONE II Sistemi lineri e proprietà di unicità Concetto di Stilità Stilità intern ed estern Criterio di Routh

Dettagli

Introduzione e strumenti

Introduzione e strumenti Introduzione e strumenti Schemi blocchi Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2 Schemi

Dettagli

Isi E.Fermi Programma di matematica classe II L. Anno scolastico 2017/2018

Isi E.Fermi Programma di matematica classe II L. Anno scolastico 2017/2018 Isi E.Fermi Progrmm di mtemtic clsse II L Prof.ss Tcchi Luci Anno scolstico / Ripsso: Polinomi ed operioni con essi. Prodotti notevoli. Scomposiioni. Frioni lgeriche. Equioni di primo grdo intere letterli

Dettagli

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione Anlisi Rele Esercizi 3 ottobre 2008 ) Tutte le distnze introdotte lezione sono invrinti per trslzioni; ovvero d(x y) = d(x + z y + z) per ogni x y e z. Definire su X = R un metric non invrinte per trslzioni.

Dettagli

Introduzione e strumenti. Schemi a blocchi

Introduzione e strumenti. Schemi a blocchi Introduzione e strumenti Schemi blocchi Schemi blocchi Convenzioni generli ed elementi bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi

Dettagli

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl Unità logio-ritmeti (ALU) Arhitetture dei Cloltori (Lettere A-I) Unit Logio-Aritmeti (ALU) Prof. Frneso Lo Presti E l prte del proessore he svolge le operzioni ritmetio- logihe Rete omintori Operzioni

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

Il calcolo letterale

Il calcolo letterale Appunti di Mtemtic Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

2 Generalità sulle matrici

2 Generalità sulle matrici 2 Generlità sulle mtrici 21 Definizione e csi prticolri Definizione 21 Mtrice n m Un mtrice n m è un tbell rettngolre di n righe e m colonne i cui elementi sono numeri reli (o complessi) indicizzti con

Dettagli

Integrazione per parti. II

Integrazione per parti. II Integrzione per prti. II L regol di integrzione per prti f xgx dx [ f xgx] b f xg x dx f, g funzioni derivbili con funzione derivt continu su [, b], pplict ripetutmente, permette in prticolre di integrre

Dettagli

5.4 Il teorema fondamentale del calcolo integrale

5.4 Il teorema fondamentale del calcolo integrale Esercizi 5.3. Si f : R R un funzione continu, e supponimo che f bbi sintoti obliqui per ±. Provre che f è uniformemente continu in R.. Esibire un funzione f : R R limitt e di clsse C, m non uniformemente

Dettagli

Fondamenti di Informatica Ingegneria Meccanica, Elettrica, Gestionale Prova scritta del 13 Aprile 2004

Fondamenti di Informatica Ingegneria Meccanica, Elettrica, Gestionale Prova scritta del 13 Aprile 2004 C Fondmenti di Informtic Ingegneri Meccnic, Elettric, Gestionle Pro scritt del 13 Aprile 004 NOME MATRICOLA Esercizio 1 Dto il segente progrmm in lingggio C: #inclde #inclde oid min

Dettagli

Il calcolo letterale

Il calcolo letterale Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre le regole di quello

Dettagli

UNITA 13. GLI ESPONENZIALI

UNITA 13. GLI ESPONENZIALI UNITA. GLI ESPONENZIALI. Le potenze con esponente intero, rzionle e rele.. Le proprietà delle potenze.. Equzioni esponenzili che si riconducono ll stess bse. 4. L funzione esponenzile. 5. Il grfico dell

Dettagli

Capitolo 5 Reti combinatorie. 5.1 Il problema della sintesi. Progetto logico di circuiti combinatori. Obiettivi del progetto logico

Capitolo 5 Reti combinatorie. 5.1 Il problema della sintesi. Progetto logico di circuiti combinatori. Obiettivi del progetto logico Cpitolo 5 Reti omintorie 5. - Il prolem dell sintesi 5.2 - Reti di osto minimo 5.3 - Il metodo delle mppe 5.4 - Reti Nnd ed Nor 5.5 - Reti progrmmili 5. Il prolem dell sintesi Funzione ssegnt Oiettivi

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

SOMMARIO DEL TOMO 2. CAPITOLO 5 I monomi. CAPITOLO 6 I polinomi CAPITOLO 7. Scomposizione in fattori

SOMMARIO DEL TOMO 2. CAPITOLO 5 I monomi. CAPITOLO 6 I polinomi CAPITOLO 7. Scomposizione in fattori SOMMARIO DEL TOMO CAPITOLO I monomi. Introduzione l clcolo letterle pg.. I monomi pg.. Operzioni con i monomi pg. 9. Mssimo Comun Divisore e minimo comune multiplo pg. 0 ESERCIZI pg. CAPITOLO 6 I polinomi

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I)

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I) Elettronic dei Sistemi Digitli Il test nei sistemi elettronici: gusti ctstrofici e modelli di gusto (prte I) Vlentino Lierli Diprtimento di Tecnologie dell Informzione Università di Milno, 26013 Crem e-mil:

Dettagli

Aritmetica Definizioni di concetti, regole e proprietà per il 1 anno della scuola media

Aritmetica Definizioni di concetti, regole e proprietà per il 1 anno della scuola media Aritmetic Definizioni di concetti, regole e proprietà per il nno dell scuol medi ) INSIEMI Concetto primitivo Un concetto primitivo è un concetto che non viene definito con precisione, m solo descritto

Dettagli

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio.

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio. ppunti di Mtemtic Polinomi Un polinomio è un somm lgeric di monomi. ; c sono polinomi. ; I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche essere considerto

Dettagli