{ 3 x y=4. { x=2. Sistemi di equazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "{ 3 x y=4. { x=2. Sistemi di equazioni"

Transcript

1 Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto dei grdi delle equzioni che lo costituiscono: Esempio x { 3 x y=4 x 2 x y 4 y 2 =5 è un sistem di sesto grdo (il polinomio che è ssocito ll prim equzione h grdo 3 e quello ssocito ll second h grdo 2). Per desso vedremo solo il tipo di sistemi più semplici: quelli di due equzioni di primo grdo in due incognite. Sistemi di equzioni di primo grdo Considereremo, dunque, sistemi di due equzioni di primo grdo nelle due incognite x e y. Risolvere un sistem di questo tipo, llor, signific trovre, tr le infinite soluzioni delle due equzioni prese singolrmente, un soluzione (cioè un coppi di vlori x e y) che le soddisf entrmbe. Quest si dirà soluzione del sistem. Per primo, bisogn ridurre il sistem in form normle, medinte gli opportuni pssggi lgebrici, cioè mettere i termini con l x e con l y prim dell'ugule ed i termini noti dopo l'ugule. In questo modo, il sistem si present nell form: ' x b ' y=c' { Come nel cso delle equzioni, un sistem di equzioni può essere possibile, impossibile o indeterminto second dell'esistenz o meno di un o più soluzioni. Sistem possibile Il sistem è possibile se le sue equzioni sono comptibili, nel senso che non si contrddicono né si ripetono. In questo cso, esiste un ed un sol soluzione, cioè un ed un sol coppi di vlori (x, y) che soddisf entrmbe le equzioni. x y=3 { x y=1 l somm di due numeri è 3 e l loro differenz è 1. Con un po' di logic dico che i numeri sono 2 e 1: inftti = 3 e 2-1 = 1 e le due equzioni sono comptibili. Il risultto è: { x=2 y =1

2 Più in generle un sistem del tipo: { ' x b' y=c' è possibile se vle l seguente relzione tr i coefficienti dell x e dell y: ' b b ' Sistem impossibile Il sistem è impossibile se le sue equzioni si contrddicono fr di loro e, dunque, tr le infinite soluzioni dell prim e dell second equzione non ve ne è nessun in comune, che soddisf, cioè, entrmbe le equzioni. x y=3 { x y=1 l somm di due numeri è 3 e l loro somm è 1. Non è possibile che due numeri sommti vlgno un volt 3 ed un volt 1, quindi tutto il sistem è impossibile. Se si risolve il sistem con uno qulsisi dei metodi che vedremo successivmente, si ottiene un'equzione impossibile del tipo 0 = numero. Più in generle, un sistem del tipo: { ' x b' y=c' è impossibile se vle l relzione: ' = b b' c c' Sistem indeterminto Il sistem è indeterminto se le sue equzioni dicono entrmbe l stess cos, cioè le due equzioni del sistem sono equivlenti (hnno lo stesso insieme infinito di soluzioni). x y=3 { 2 x 2 y=6 l somm di due numeri è 3 e l somm del doppio dei due numeri è 6; le due equzioni dicono l stess cos, cioè forniscono l stess informzione sull coppi (x,y). Se si risolve il sistem si trov un'equzione indetermint del tipo 0=0.

3 In generle, un sistem del tipo: { ' x b' y=c' è indeterminto se vle: ' = b b' = c c' Rissumendo: Dto un sistem di due equzioni lineri in due incognite del tipo: { ' x b ' y=c ' si può dire, nche senz risolverlo, se è possibile, impossibile od indeterminto, osservndone i coefficienti: ' b b ' sistem possibile (o determinto) => esiste un ed un sol soluzione ' = b b' c c' sistem impossibile => non esiste lcun soluzione del sistem ' = b b' = c c' sistem indeterminto => esistono infinite soluzioni, quelle di ognun delle equzioni prese singolrmente Soluzione di un sistem di primo grdo di due equzioni due incognite Nelle prossime pgine vedremo l soluzione di un sistem (sempre lo stesso) con i diversi metodi noti; i più semplici per due equzioni con due incognite sono il metodo di sostituzione ed il metodo di confronto. Il metodo di Crmer, invece, decismente troppo complicto per sistemi di questo tipo, rppresent, tuttvi, il metodo principle per risolvere sistemi di più equzioni più incognite. Risolvere il sistem di equzioni: Metodo di sostituzione In entrmbe le equzioni l x e l y devono vere lo stesso vlore, llor posso ricvre d un delle due equzioni il vlore dell x (o dell y) e sostituirl ll x (o ll y) nell'ltr equzione. In questo modo si ottiene un'equzione in un sol incognit che sppimo risolvere. Sostituire x od y è indifferente e dipende dl sistem: nel nostro cso conviene ricvre l y dll second equzione e sostituirl nell prim, in modo d non vere

4 frzioni. Dunque, isolo l y nell second equzione: { y=7 3 x cmbio di segno: { y= 7 3 x sostituisco il vlore dell y nell prim equzione: 2 x x =12 { y= 7 3 x eseguo i clcoli e trovo l soluzione nell prim equzione: x=3 { y= 7 3 x Nell second equzione l posto di x sostituisco il vlore trovto: x=3 { y= e ottengo l coppi di vlori che è soluzione del sistem: { x=3 y =2 Rissumendo, per risolvere un sistem col metodo di sostituzione: ricvo l vribile d un delle due equzioni (l più semplice) e l sostituisco nell'ltr equzione quest divent d un sol incognit e l risolvo un volt trovt l'incognit l sostituisco nell prim equzione e trovo il vlore dell'ltr incognit Metodo del confronto Nel metodo di confronto ricvo d entrmbe le equzioni l x poi metto confronto i risultti. esplicito i termini con l x: { 2 x=12 3 y 3 x =7 y ricvo le x: 12 3 y {x= 2 x= 7 y 3 e poi uguglio i risultti e risolvo l'equzione in un sol incognit che ho scritto. Come second equzione posso considerre un qulsisi delle due:

5 {12 3 y = 7 y 2 3 x= 7 y 3 svolgo i pssggi lgebrici e ricvo l y dll prim equzione: { y=2 x= 7 y 3 sostituisco il vlore 2 ll y nell second equzione e ottengo l soluzione: { x=3 y =2 Rissumendo, per risolvere un sistem col metodo del confronto: ricvo d entrmbe le equzioni l x (oppure l y) come prim equzione eguglio le espressioni trovte, come second scelgo un delle due (l più semplice) risolvo l prim equzione sostituisco il risultto nell second equzione e trovo il vlore dell'ltr vribile Metodo di ddizione Nel metodo di ddizione si oper sulle equzioni in modo d rendere ugule e di segno contrrio nelle due equzioni il termine che contiene l y (successivmente frò l stess cos per l x). Per frlo, moltiplico entrmbi i membri di un'equzione per uno stesso fttore (è possibile frlo per il secondo principio di equivlenz). moltiplico l second equzione per 3 in modo d vere lo stesso termine in y m col segno cmbito: { 9 x 3 y=21 or sommo in verticle le due equzioni, termine termine; in questo modo elimino il termine in y: { 9 x 3 y= x 0=33 dll'equzione ottenut posso ricvre l x: x=3 Allo stesso modo, per trovre l y devo eliminre l x, quindi moltiplico l prim equzione per +3 e l second per -2. In questo modo le x diventno uguli e di segno contrrio:

6 { 6 x 9 y =36 6 x 2 y= 14 or sommo in verticle e sprisce il termine in x: 6 x 9 y=36 { 6 x 2 y= y=22 d cui ricvo l y: y=2 Dunque, il risultto è: { x=3 y =2 Rissumendo, per risolvere un sistem col metodo di ddizione: moltiplico un od entrmbe le equzioni per un opportuno fttore, in modo d vere i termini con l x uguli e di segno contrrio sommo le equzioni: ottengo un'equzione con l sol y e l risolvo; trovo l y moltiplico un od entrmbe le equzioni per un opportuno fttore, in modo d vere i termini con l y uguli e di segno contrrio sommo le equzioni: ottengo un'equzione con l sol x e l risolvo; trovo l x Per l su immeditezz, questo metodo è il più usto qundo le equzioni sono numeriche. Metodo di Crmer Il metodo di Crmer f uso dell notzione tipic delle mtrici e del concetto di determinnte. E' un metodo molto usto, soprttutto nei sistemi lineri di molte equzioni. come prim cos, scrivo i coefficienti del sistem in un tbell (mtrice): l prim colonn contiene i coefficienti dell x, l second i coefficienti dell y: [ ] In entrmbe le soluzioni dovrò considerre l denomintore il determinnte di quest mtrice: è un numero e per clcolrlo devo fre il prodotto fr il primo e l'ultimo termine meno il prodotto fr il secondo ed il terzo: DENOMINATORE=det[ ] = = 2 9= 11 Per clcolre, invece, i numertori dell x e dell y devo considerre i determinnti di due diverse mtrici. Al numertore dell x devo considerre il determinnte dell mtrice che

7 si ottiene d quell sopr sostituendo l posto dell colonn dei coefficienti delle x i termini noti: NUMERATORE dell x=det[ ] = = 12 21= 33 In definitiv: x= =3 Anlogmente, per clcolre il numertore dell y considero il determinnte dell mtrice che si ottiene sostituendo ll colonn dei coefficienti delle y i termini noti: NUMERATORE dell y=det[ ] = =14 36= 22 y= =2 Rissumendo, dto un sistem del tipo: { ' x b ' y=c ' possono clcolre con le seguenti espressioni:, le soluzioni del sistem si det[ c c ' x= det[ ' b'] b b'] b det[ ' y= det[ ' c'] c b'] b

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

Materia: MATEMATICA Data: 5/04/2005

Materia: MATEMATICA Data: 5/04/2005 Mteri: MATEMATICA Dt: 5/4/25 L disequzione e' un disuguglinz che e' verifict per certi intervlli di vlori Ad esempio l disequzione x - 4 e' verifict per tutti i vlori dell x mggiori di 4, cioè se l posto

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Introduzione alle disequazioni algebriche

Introduzione alle disequazioni algebriche Introduzione lle disequzioni lgebriche Giovnni decide di fre ttività fisic e chiede informzioni due plestre. Un plestr privt chiede un quot d iscrizione nnu di 312, più 2 per ogni ingresso. L plestr comunle

Dettagli

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI I NUMERI REALI E I RADICALI Recupero RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI COMPLETA Risolvi l disequzione ( ). ( ) ( ) ( ) Elimin le prentesi clcolndo il prodotto. Applic l regol

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Le Matrici. 001 ( matrice unità)

Le Matrici. 001 ( matrice unità) Le Mtrici Un mtrice è un tbell di numeri o più in generle di elementi disposti quindi secondo righe e colonne. Le mtrici si indicno con le lettere miuscole dell lfbeto, gli elementi con quelle minuscole

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

Le frazioni algebriche

Le frazioni algebriche Le frzioni lgeriche Definizione se A e B sono due polinomi e B è diverso dl polinomio nullo, B A viene dett frzione lgeric. Esempio sono esempi di frzioni lgeriche. NOTA ogni monomio o polinomio può essere

Dettagli

Le frazioni algebriche

Le frazioni algebriche Progetto Mtemtic in Rete - Frzioni lgeriche - Le frzioni lgeriche Definizione se A e B sono due polinomi e B è diverso dl polinomio nullo, B A viene dett frzione lgeric. Esempio sono esempi di frzioni

Dettagli

Scheda per il recupero 2

Scheda per il recupero 2 Sched A Ripsso Sched per il recupero Numeri rzionli e introduzione i numeri reli Definizioni principli DOMANDE RISPOSTE ESEMPI Che cos è un frzione? Qundo un frzione si dice ridott i minimi termini? Un

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n :

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n : Mtemtic II. Generlità sui sistemi lineri Un sistem linere è un sistem di m equzioni lineri (cioè di primo grdo) in n incognite,, n : n n b b m mn n m (*) Un soluzione del sistem linere è un n-upl di numeri

Dettagli

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase 1 Compito in Clsse D/PNI Liceo Scientifico Sttle G. Stmpcchi Tricse Tempo di lvoro 75 minuti Argomenti: Clcolo di determinnti del terzo ordine- Risoluzione di sistemi di equzioni di primo grdo di tre equzioni

Dettagli

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni 9 ) Proprietà delle disuguglinze fr numeri reli reltivi ) Inequzioni e loro proprietà ) Inequzioni rzionli intere di primo grdo d un incognit 4) Segno del trinomio di secondo grdo : T = c 5) Inequzioni

Dettagli

(da dimostrare); (da dimostrare).

(da dimostrare); (da dimostrare). Proprietà delle trsposte Sino, K m,n e si K, llor vlgono le seguenti relzioni: 1) ( )= 2) (+)= + 3) ()= (d dimostrre); (d dimostrre). (dimostrt di seguito); DIM. 2): Devo dimostrre che l mtrice ugule ll

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

Il calcolo letterale

Il calcolo letterale Appunti di Mtemtic Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

Sistemi lineari Sistemi lineari quadrati

Sistemi lineari Sistemi lineari quadrati Sistemi lineri Sistemi lineri qudrti Definizione e crtteristiche di sistem qudrto (/) Dti un mtrice qudrt A(n n) ed un vettore (colonn) b d n componenti; Determinimo in modo tle che: A b Quest relzione

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI Esponenzili e logritmi ESPONENZIALI E LOGARITMI Potenze Fino d or si sono definite le potenze d esponenete intero e rzionle (si positivi che negtivi). Ripssimo le definizioni e i concetti che li rigurdno:

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

Il calcolo letterale

Il calcolo letterale Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre le regole di quello

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

n volte m volte n+m volte n volte n volte n volte } = a n + n + n = a n m

n volte m volte n+m volte n volte n volte n volte } = a n + n + n = a n m Corso di Potenzimento.. 009/010 1 Potenze e Rdicli Dto un numero positivo, negtivo o nullo e un numero intero positivo n, si definisce potenz di se ed esponente n il prodotto di n fttori tutti uguli d

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA Liceo Scientifico G. Slvemini Corso di preprzione per l gr provincile delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA PROPRIETA DELLE POTENZE PRODOTTI NOTEVOLI QUESITO SUGGERIMENTO y è un espressione non

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.04) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Contenuto Emanuele Agrimi 1

Contenuto Emanuele Agrimi 1 Contenuto Condizioni di esistenz.... Linee di frzione.... Rdici di indice pri.... Logritmi.... Funzioni goniometriche inverse.... Composizione di condizioni di esistenz... Disequzioni irrzionli.... Esempi....

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

SCOMPOSIZIONE IN FATTORI

SCOMPOSIZIONE IN FATTORI Sintesi di Mtemtic cur di Griell Grzino SCOMPOSIZIONE IN FATTORI ) Rccoglimento fttore comune ( Applicile d un polinomio di un numero qulunque di termini purchè i termini presentino lmeno un letter o un

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.4) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti Algebr linere Algebr Un lgebr è un sistem di segni in cui sono definite delle operzioni Algebr sclre Algebr dei vettori Algebr mtricile In lgebr mtricile un numero è chimto sclre Vettori Vettori vettore

Dettagli

Integrazione. w j f(x j ) x j = a + h j 0 j N h = b a N

Integrazione. w j f(x j ) x j = a + h j 0 j N h = b a N Integrzione w j pesi f(x) dx = N j=1 w j f(x j ) N più piccolo possibile. x b Metodi spzitur fiss x j = + h j j N h = b N Chiusi: Aperti: x j, b x j, b / x j Metodo del rettngolo f(x) dx = h 4 f(x j )

Dettagli

Anno 2. Potenze di un radicale e razionalizzazione

Anno 2. Potenze di un radicale e razionalizzazione Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

LE FRAZIONI ALGEBRICHE

LE FRAZIONI ALGEBRICHE LE FRAZIONI ALGEBRICHE 9 Per ricordre H Un frzione lgebric eá un frzione che h l numertore e l denomintore dei polinomi; ess h quindi significto per tutti i vlori reli delle lettere che in ess compiono

Dettagli

equazioni e disequazioni

equazioni e disequazioni T Cpitolo equzioni e disequzioni Disequzioni e princìpi di equivlenz Le disuguglinze sono enunciti fr espressioni che confrontimo medinte le seguenti relzioni d ordine: (minore), (mggiore), # (minore o

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:...

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:... Sistemi di equzioni lgebriche lineri Un equzione lgebric linere in n incognite si present nell form: 1 1+ 2 2 +... + n n = b dove ( 1, 2,... n ) rppresentno le incognite, 1, 2,... n sono i coefficienti

Dettagli

Introduzione e strumenti

Introduzione e strumenti Introduzione e strumenti Schemi blocchi Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2 Schemi

Dettagli

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice

Dettagli

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 0/ CLASSI SECONDE IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse terz, onsiglimo lo svolgimento piere di eserizi

Dettagli

Introduzione e strumenti. Schemi a blocchi

Introduzione e strumenti. Schemi a blocchi Introduzione e strumenti Schemi blocchi Schemi blocchi Convenzioni generli ed elementi bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi

Dettagli

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio.

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio. ppunti di Mtemtic Polinomi Un polinomio è un somm lgebric di monomi. Esempio: b ; y y ; b c sono polinomi. I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:.

Dettagli

UNITA 13. GLI ESPONENZIALI

UNITA 13. GLI ESPONENZIALI UNITA. GLI ESPONENZIALI. Le potenze con esponente intero, rzionle e rele.. Le proprietà delle potenze.. Equzioni esponenzili che si riconducono ll stess bse. 4. L funzione esponenzile. 5. Il grfico dell

Dettagli

Integrazione. w j f(x j ) x j = a + h j 0 j N h = b a N

Integrazione. w j f(x j ) x j = a + h j 0 j N h = b a N Integrzione w j pesi f(x) dx = N j=1 w j f(x j ) N più piccolo possibile. Metodi spzitur fiss x b x j = + h j j N h = b N Chiusi: Aperti: x j, b x j, b / x j f 1 h h h h x x 1 x 2 x 3 x 4 x 5 Metodo del

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

Oscillatore armonico unidimensionale

Oscillatore armonico unidimensionale Oscilltore rmonico unidimensionle Autovlori ed utofunzioni L hmiltonin di un oscilltore rmonico unidimensionle si scrive Definendo le vribile dimensionli L eq.) si scrive H = m p + m ω x ) = m h d dx +

Dettagli

Integrazione. Divido il range di integrazione in N intervalli. w j f(x j ) x j = a + h j 0 j N h = b a N

Integrazione. Divido il range di integrazione in N intervalli. w j f(x j ) x j = a + h j 0 j N h = b a N Integrzione Divido il rnge di integrzione in N intervlli w j pesi (x) dx = N j= w j (x j ) N più piccolo possibile. x b Metodi spzitur iss x j = + h j j N h = b N Chiusi: = x, b = x N Aperti:, b / x j

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Prof Emnuele ANDRISANI Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se 0, per ogni R se 0, per tutti e soli gli R se 0, per tutti e soli gli Z Esponenzili e ritmi Sono definite:

Dettagli

{ } secondi pedici, appartenenti a 1, 2, 0 0 a

{ } secondi pedici, appartenenti a 1, 2, 0 0 a APPENDICE AL CAPITOLO : ALTRE PROPRIETA DEI DETERMINANTI Come si clcol il erminnte di un mtrice di dimensione n? Per evitre un ggrvio di teori limitimoci l clcolo del erminnte di un mtrice Il erminnte

Dettagli

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ;

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ; Cpitolo Rdicli Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli qundo è possibile clcolrle) 9 9 9 00 m ) n ) o ) 0, 0 0, 09 0, 000 9 0, Determin le seguenti rdici

Dettagli

U.D. N 13 Le inequazioni ad una incognita

U.D. N 13 Le inequazioni ad una incognita Unità Didttic N Le inequzioni d un incognit 5 U.D. N Le inequzioni d un incognit 0) Proprietà delle disuguglinze fr numeri reli reltivi 0) Inequzioni e loro proprietà 0) Inequzioni rzionli intere di primo

Dettagli

15. Cambiamenti di base in uno spazio vettoriale.

15. Cambiamenti di base in uno spazio vettoriale. 5 Cmbimenti di bse in uno spzio vettorile 5 Esempio Si VR uno spzio vettorile di dimensione e si B = (u, u, u ) un su bse Sino v = 5u + 6u, v = u u + 5u, v = u + u + u, v = u 4u 7u Si M l mtrice vente

Dettagli

Geometria BAER Canale I Esercizi 13

Geometria BAER Canale I Esercizi 13 Geometri BAER Cnle I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che bbimo ftto quest prte un po in frett, m si può sempre provre. Esercizio. Si scrivno le equzioni delle prbole

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

2 Generalità sulle matrici

2 Generalità sulle matrici 2 Generlità sulle mtrici 21 Definizione e csi prticolri Definizione 21 Mtrice n m Un mtrice n m è un tbell rettngolre di n righe e m colonne i cui elementi sono numeri reli (o complessi) indicizzti con

Dettagli

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni Funzioni Consider le seguenti telle e stilisci se e sono direttmente proporzionli, inversmente proporzionli o se vi è un proporzionlità qudrtic. Scrivi l espressione nlitic delle funzioni e rppresentle

Dettagli

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n Coniche e qudriche Un qudric è il luogo degli zeri in E n, lo spzio euclideo di dimensione n, di un polinomio di grdo nelle vribili,, n Polinomi proporzionli dnno luogo ll stess qudric Se n = un qudric

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

RIEPILOGO FRAZIONI ALGEBRICHE

RIEPILOGO FRAZIONI ALGEBRICHE RIEPILOGO FRAZIONI ALGEBRICHE Per semplificre un frzione: scomponi numertore e denomintore semplific numertore e denomintore tenendo presente che: il quoziente di due fttori uguli è il quoziente di due

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

ESPONENZIALI E LOGARITMICHE

ESPONENZIALI E LOGARITMICHE Potenze con esponente rele L potenz Sono definite: è definit:. se 0, per ogni R. se 0, per tutti e soli gli R. se 0, per tutti e soli gli Z. 7 7. 0 Non sono definite: 0 0. Csi prticolri :,, per ogni R

Dettagli

Ortogonalità di funzioni

Ortogonalità di funzioni Cpitolo 0 Ortogonlità di funzioni 01 Funzioni linermente indipendenti e funzioni ortogonli Si (, b) un intervllo dell sse rele Si dice le n + 1 funzioni φ 0 (x), φ 1 (x),, φ n (x), definite in (, b), sono

Dettagli

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio.

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio. ppunti di Mtemtic Polinomi Un polinomio è un somm lgeric di monomi. ; c sono polinomi. ; I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche essere considerto

Dettagli

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi.

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi. Clcolo letterle. ) Operzioni con i monomi. ) L moltipliczione. ) L divisione. c) Risolvi le seguenti espressioni con i monomi. ) I polinomi. ) Clcol le seguenti somme di polinomi. ) Applic l proprietà

Dettagli