AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n."

Transcript

1 AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert un bse nel dominio V ed un nel condominio V, eventulmente eguli fr loro, esiste un ben determint mtrice qudrt A di ordine n egule ll dimensione di V. Allor ogni endomorfismo f : V V si può rppresentre come Y = A X con X e Y mtrici colonn delle coordinte dei vettori v e f(v) rispetto ll bse scelt in V e A mtrice qudrt ssocit d f. Si f : V V un endomorfismo di V in sé. Si dice utovettore di f ogni vettore v V tle che. v. f(v) = v con R. Lo sclre viene detto utovlore di f e v chimsi utovettore reltivo ll utovlore. Ciò signific che l immgine di v trmite f è un multiplo di v stesso. L insieme degli utovlori di f si dice spettro di f. Si osservi che l condizione ) è essenzile; inftti se così non fosse tutti i numeri reli c srebbero utovlori corrispondenti v =, in qunto f() = c è un identità sempre verifict qulunque si c R. Sussiste il seguente teorem: L insieme V() costituito dl vettore nullo e d tutti gli utovettori di f reltivi ll utovlore è un sottospzio vettorile di V. Il sottospzio V() costituito dl vettore nullo e d tutti gli utovettori di f reltivi ll utovlore si dice utospzio reltivo ll utovlore. Per qunto osservto il sottospzio V() non può ridursi l solo vettore nullo e pertnto dim V(). Inoltre si dice molteplicità geometric di, e si indic con m g () l dim V().

2 Dimostrimo or il seguente teorem: Si f : V V un endomorfismo di V in sé. Se v, v,,v n sono utovettori reltivi,,, n utovlori distinti tr loro, llor v, v,,v n sono linermente indipendenti. Dimostrzione Procedimo per induzione. Se n =, l utovettore v è diverso dl vettore nullo (per definizione) e quindi è linermente indipendente. Si n > e supponimo che, se v, v,,v n- sono utovettori reltivi gli utovlori,,, n- distinti tr loro, essi sino linermente indipendenti. Si llor v n un utovetture reltivo ll utovlore n distinto d,,, n- e supponimo, per ssurdo, che v n dipend linermente d v, v,,v n-, cioè che si: () v n = α v + α v + + α n- v n- Applicndo l endomorfismo f d mbo i membri dell () si ottiene: () f(v n ) = n v n = α ( v ) + α ( v )+ + α n- ( n- v n- ) Sostituendo l () nell () si ottiene: α ( n - )v + α ( n - )v + + α n- ( n - n- )v n- = Poichè n,,, n- e v, v,,v n- sono linermente indipendenti per l ipotesi induttiv, si h α = α = = α n- =. Dll () llor risult v n = contro l ipotesi che v n si utovettore. Quindi v, v,,v n sono linermente indipendenti. Inoltre si h che: Se dim V = n, ogni endomorfismo f : V V h l più n utovlori distinti. Vedimo come si possono determinre gli utovlori e gli utovettori di un endomorfismo. Si f : V V un endomorfismo di V in sé. Indict con A l mtrice ssocit d f rispetto d un bse B = { u, u,,u n } di V, se x è un utovettore reltivo ll utovlore e se X indic l mtrice colonn delle coordinte di x rispetto B, dll essere Y = A X

3 risult A X = X. In ltre prole se A è un mtrice qudrt di ordine n, x R n è un utovettore di A con utovlore A x = x. ESEMPI Ogni vettore x è utovettore dell mtrice identità I con utovlore. Inftti Ix = x x quindi lo spettro dell identità è { }. Generlizzndo Per ogni numero rele c ogni vettore x è utovetture dell mtrice ci con utovlore c. Inftti risult (ci) x = cx x e lo spettro di ci è { c }. Se c = si h lo spettro dell mtrice zero. Indict con I l mtrice identità d A x = x si ottiene A x - I x = (A - I)x = () L () rppresent un sistem linere omogeneo di n equzioni in n incognite del tipo: ( - )x + x + + n x n = x + ( - )x + + n x n =.. n x + n x + + ( nn - ) x n =. Tle sistem h soluzioni non nulle, essendo x diverso d zero, qundo det (A - I) = cioè... det (A - I) =... n Sviluppndo tle determinnte si ottiene un equzione di grdo n in, dett equzione crtteristic.... n nn n n... = 3

4 n n n p () = n = il polinomio p () è detto polinomio crtteristico. Per il teorem fondmentle dell Algebr quest equzione mmette n soluzioni,,, n che rppresentno gli utovlori di A. Pertnto Se A è un mtrice qudrt di ordine n, un numero rele è utovlore di A se e solo se det (A - I) = Si dice molteplicità lgebric di un utovlore, e si indic con m (), l molteplicità di come rdice del polinomio crtteristico, cioè il numero di volte che compre come soluzione dell equzione crtteristic. Si h che: n i= m ( i ) = n Sussiste inoltre il seguente teorem: Se f : V V è un endomorfismo di V in sé e è un suo utovlore llor risult m g ( ) m ( ) ESEMPI. Si clcolino gli utovlori dell seguente mtrice 3 Soluzione Detto un utovlore di A deve essere det (A - I) = con I mtrice identic di ordine. Sino A = I = I = 3 Deve essere A - I = 3 det (A - I) = = 3 4

5 Quindi det (A - I) = ( - )( - ) 6 = = = ( + )( - 4) = det (A - I) = = - e = 4 Pertnto gli utovlori di A sono = - e = 4. Determinimo gli utovettori reltivi ll utovlore = -. Considerimo il sistem linere reltivo ll equzione (A + I)x = Essendo, per = - (A + I) = 3 3 il sistem ssocito d (A +I) è: Esso mmette infinite soluzioni. Posto x = y si h : x y = -3x + 3y = x = α y = α pertnto gli infiniti utovettori reltivi ll utovlore = - sono x = α Per = 4 si ottiene 3 (A - 4I) = 3 il sistem ssocito d (A 4I) è: -3x y = -3x - y = Esso mmette infinite soluzioni. Posto x = - y si h : 3 x = -3α y = α 3 pertnto gli infiniti utovettori reltivi ll utovlore = - sono x = α.. Si A = Clcolimo i suoi utovlori, gli utospzi reltivi gli utovlori e verifichimo che gli utovettori ssociti gli utovlori sono linermente indipendenti. 5

6 Soluzione A - I = det(a -I) = = ( ) ( ) = ( )( ) ( )( )( ) = + = + Gli utovlori di A quindi sono = -, =, 3 =. Clcolimo gli utovettori reltivi = - (A + I) = Il sistem ssocito d (A +I) è: x + z= - x + y+z = Esso mmette infinite soluzioni. Posto x 3 = z, x = y, x = x si h: x+ z= z = x 3 x = - 3 x = - x 3 Quindi l utospzio ssocito = - è costituito di vettori x = x 3 3, con x 3 R Con procedimento nlogo si ottiene che l utospzio ssocito = è costituito di vettori x = x, con x R e l utospzio ssocito 3 = è costituito di vettori x = x, con x R. 6

7 Verifichimo che i tre utovettori ssociti i tre distinti utovlori sono linermente indipendenti. Bst fr vedere che det 3. E si ottiene det 3 = Si A = clcolimo i suoi utovlori, gli utospzi reltivi gli utovlori e verifichimo se gli utovettori ssociti gli utovlori sono linermente indipendenti. Soluzione det(a -I) = = ( ) = = - Quindi = - è utovlore di A. Clcolimo (A + I) =. L utospzio ssocito si ottiene risolvendo x = x d cui si h che l utovettore reltivo ll utovlore = - è x x = = x, con x R, d ciò è immedito che non è possibile trovre due utovettori linermente indipendenti tr loro. Il polinomio crtteristico p () di un mtrice qudrt A di ordine n gode delle seguenti proprietà: p () h grdo n e il coefficiente di n è (-) n ; n n il coefficiente di è ( ) ii il termine noto è det(a), cioè n = det(a) i indicti con,,, n gli utovlori di A risult det(a) = n. 7

8 ESEMPI 3. Esistono mtrici reli che non hnno utovlori reli. Ogni mtrice rele 3 3 h lmeno un utovlore rele. Inftti se A è un mtrice rele, il suo polinomio crtteristico è coefficienti reli. Se A è dell ordine 3, il polinomio crtteristico h grdo 3 e, quindi, per il teorem di Bolzno-Weierstrss, h lmeno un rdice: l funzione rele p () ssume vlori positivi e negtivi ed è continu; quindi il suo grfico intersec l sse delle scisse. Se invece considerimo l mtrice A = e det(a - I) = p() = Il polinomio crtteristico è p () = +, che non h rdici reli, m solo le due rdici complesse i e -i.. Considerimo l mtrice un suo utovlore è: det(a - I) = 3 5 A = 3 5 = ( - ) 3 = = il polinomio crtteristico è p () = ( - ) 3 = ; esso h grdo 3 (ordine dell mtrice A) e il coefficiente di 3 è (-) 3 = - mentre il coefficiente di è (-) ( + + ) = 3 n = = det(a) essendo gli utovlori = = 3 =, det(a) = = l molteplicità lgebric m () = m () = 3 Proprietà degli utovlori Si A un mtrice qudrt di ordine n e un suo utovlore llor: A e A T (trspost di A) hnno gli stessi utovlori Se A è non singolre llor - è utovlore di A - p è utovlore di A p p N se A è ortogonle llor = = è utovlore di A det(a) = 8

9 gli utovlori di mtrici digonli e tringolri (inferiori e superiori) sono gli elementi dell digonle principle. Due mtrici qudrte A e B di ordine n si dicono simili se esiste un mtrice non singolre S tle che B = S A S - Si può dimostrre che L similitudine tr mtrici è un relzione di equivlenz. Sussiste l seguente proposizione: se A e B sono mtrici simili, llor det(a - I) = det(b - I) quindi A e B hnno gli stessi utovlori con l stess m (). Teorem Sino A e B due mtrici simili. Allor esse hnno gli stessi utovlori con l stess molteplicità lgebric e l stess molteplicità geometric. Dimostrzione Sino A e B due mtrici simili e si un utovlore di entrmbe. Fissimo un mtrice non singolre S tle che B = S A S - Se v V A (), ponimo f(v) = S - v. llor risult B f(v) = B S - v = S - S B S - v = S - A v = S - v = (S - v) = f(v) e pertnto f(v) V B (). In ltri termini bbimo definito un ppliczione linere f: V A () V B (). Anlogmente si può definire g: V B () V A () ponendo per w V B () g(w) = S w. E immedito llor che l ppliczione compost g f è l ppliczione identic su V A () e che f g è l ppliczione identic su V B (). Quindi gli spzi V A () e V B () sono isomorfi e pertnto hnno l stess dimensione, cioè l stess molteplicità lgebric e geometric. Dto un endomorfismo f : V V essso si dice digonlizzbile se è possibile trovre un bse B di V rispetto ll qule l mtrice qudrt ssocit d f è un mtrice digonle. Un mtrice qudrt A di ordine n è non singolre (o regolre) se r(a) = n, cioè se A h rngo mssimo, cioè ncor se det(a) ; in cso contrrio A si dice singolre. 9

10 Sussiste l seguente: Condizione necessri e sufficiente ffinché un endomorfismo f : V V si digonlizzbile è che esiste un bse B di V costituit d utovettori. Dimostrzione Se f : V V è digonlizzbile e A = n è l mtrice ssocit d f rispetto d un bse B = {u, u,, u n,} di V, si h: f(u ) = u, f(u ) = u,, f(u n ) = n u n cioè i vettori u, u,, u n sono gli utovettori ssociti gli utovlori,,, n. Vicevers, se B = {u, u,, u n,} è un bse di utovettori di V reltiv gli utovlori,,, n rispettivmente, llor si h f(u ) = u, f(u ) = u,, f(u n ) = n u n Quindi l mtrice ssocit d f rispetto B è proprio l mtrice digonle A. Se f è digonlizzbile llor l mtrice d ess ssocit rispetto d un bse di utovettori è un mtrice digonle l cui digonle principle è costituit dgli utovlori corrispondenti, rispettivmente, gli utovettori dell bse. Si dimostr che Se f è un endomorfismo di V in sé digonlizzbile, llor il suo polinomio crtteristico h solo rdici reli. Vle inoltre l seguente: Condizione necessri e sufficiente perché un endomorfismo f di V in sé si digonlizzbile è che. il polinomio crtteristico bbi solo rdici reli. per ogni utovlore di f risulti m () = m g (). L digonlizzbilità può essere definit nche in termini di mtrici. Un mtrice qudrt A si dice digonlizzbile se e solo se è simile d un mtrice digonle, cioè se esistono un mtrice non singolre S ed un mtrice digonle D tli che: D = S A S -

11 Si dimostr il seguente teorem: Un mtrice A è digonlizzbile se e solo se mmette n utovettori linermente indipendenti. Esempi 4. L mtrice dell esempio. è digonlizzbile. Inftti possiede tre utovettori linermente indipendenti che formno l mtrice 3 S = ponendo risult A = S D S -. D = Non tutte le mtrici sono digonlizzbili: l mtrice dell esempio 3. non lo è, non possedendo due utovettori linermente indipendenti.. Si dto l endomorfismo f : R 3 R 3 tle che: f(x, y, z) = (x y +z, y, -z) (x, y, z) R 3. ) Trovre gli utovlori e gli utovettori di f b) Stbilire se f è digonlizzbile. Soluzione ) L mtrice ssocit d f rispetto ll bse B = {u, u, u 3,} di R 3 è: A = Il det(a) = - e quindi r(a) = 3. Gli utovlori di f sono le soluzioni reli dell equzione crtteristic det(a - I) = ovvero = d cui ( - ) ( - ) ( - - ) = Essi sono =, =, 3 = -.

12 Gli utovettori corrispondenti ll utovlore = sono le soluzioni del sistem ottenuto dll (A - I) X = in cui si è posto = : -y +z = y = -z = Quindi si ottengono le infinite soluzioni k k R -{}; pertnto gli utovettori ssociti ll utovlore = sono x = k Anlogmente per = si ottiene il sistem -x y +z = = -3z = d cui si ottengono gli utovettori x = h h R - {}. Infine per 3 = - si h il sistem x y +z = 3y = = dl qule si ottengono gli utovettori x = t t R - {}. b) L endomorfismo f è digonlizzbile poiché mmette tre utovettori reli e distinti. Pertnto esiste un bse di utovettori di f rispetto ll qule l mtrice che rppresent f è un mtrice digonle.

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

5. Autovalori e autovettori di matrici reali.

5. Autovalori e autovettori di matrici reali. 5 Autovlori e utovettori di mtrici reli Definizione 5 Dt un mtrice A M n si dice utovlore di A un numero rele tle che X per cui n, n, AX = λ X L mtrice X si dice utovettore reltivo ll'utovlore λ λ Vicevers

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

Proiettività della Retta e del Piano.

Proiettività della Retta e del Piano. Introduzione. In queste note proponimo l clssificzione delle proiettività per l rett proiettiv ed il pino proiettivo su un corpo lgebricmente chiuso. Nel cso dell rett studieremo nche il cso del corpo

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Candidato: Matricola: Sede locale: Per la Commissione 1B 2B 3B Parte A Parte B Totale

Candidato: Matricola: Sede locale: Per la Commissione 1B 2B 3B Parte A Parte B Totale FACOLTÀ DI INGEGNERIA - CORSO DI LAUREA IN INGEGNERIA INFORMATICA Esme di MATEMATICA B (IN TELECONFERENZA), TITOLARE: A. LANGUASCO) mrzo 00 (Secondo compitino,.. 001/00) Cndidto: Mtricol: Sede locle: Per

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

15. Cambiamenti di base in uno spazio vettoriale.

15. Cambiamenti di base in uno spazio vettoriale. 5 Cmbimenti di bse in uno spzio vettorile 5 Esempio Si VR uno spzio vettorile di dimensione e si B = (u, u, u ) un su bse Sino v = 5u + 6u, v = u u + 5u, v = u + u + u, v = u 4u 7u Si M l mtrice vente

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Geometria BAER Canale I Esercizi 13

Geometria BAER Canale I Esercizi 13 Geometri BAER Cnle I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che bbimo ftto quest prte un po in frett, m si può sempre provre. Esercizio. Si scrivno le equzioni delle prbole

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

5. Quanti blocchi ha la forma di Jordan di f(x, y, z, s, t) = (0, y + z, y + z, t, 0)?

5. Quanti blocchi ha la forma di Jordan di f(x, y, z, s, t) = (0, y + z, y + z, t, 0)? Ing. erospzile e meccnic. Geometri e lgebr T. Prov del 24/01/2018 cod. 8919280 Nome Cognome Mtricol 1. Il rngo di 1 2 0 0 2 0 è: 2 4 3 ; d 5. 1 2 0 2. Le coordinte di 1, 1, 0 rispetto ll bse di C 3 formt

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Ortogonalità di funzioni

Ortogonalità di funzioni Cpitolo 0 Ortogonlità di funzioni 01 Funzioni linermente indipendenti e funzioni ortogonli Si (, b) un intervllo dell sse rele Si dice le n + 1 funzioni φ 0 (x), φ 1 (x),, φ n (x), definite in (, b), sono

Dettagli

Richiami sulle matrici (TITOLO)

Richiami sulle matrici (TITOLO) Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione prile Introduzione lle trsformzioni F. Cliò Richimi sulle mtrici (TITOLO) Lezione prile Trsformzioni Mtrici: Definizioni

Dettagli

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n Coniche e qudriche Un qudric è il luogo degli zeri in E n, lo spzio euclideo di dimensione n, di un polinomio di grdo nelle vribili,, n Polinomi proporzionli dnno luogo ll stess qudric Se n = un qudric

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1 MTRICI E DETERMINNTI CENNI SUI SISTEMI LINERI ngel Dontiello Considerimo un insieme di numeri reli rppresentti tr prentesi qudre o tonde n n ij m m mn ( ) [ ] ij i,,m j,,n Si definisce mtrice un tbell

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

Geometria I. Prova scritta del 2 marzo 2016

Geometria I. Prova scritta del 2 marzo 2016 Geometri I Anno ccdemico 0/06 Prov scritt del mrzo 06 Esercizio. Si E il pino euclideo numerico munito delle coordinte cnoniche (x, y). Si consideri il tringolo T con vertici P = (0, 0), P = (, 0), P =

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA SCUOLA DI SCIENZE. Statistica per le tecnologie e le scienze

UNIVERSITA DEGLI STUDI DI PADOVA SCUOLA DI SCIENZE. Statistica per le tecnologie e le scienze Corsi di lure: 1.1 Sino UNIVERSITA DEGLI STUDI DI PADOVA SCUOLA DI SCIENZE Sttistic per l economi e l impres Sttistic per le tecnologie e le scienze 1 1 1 A(α) = α 2 + 1 α 2 + 1 e (α) = α + 1 dove α C.

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

(da dimostrare); (da dimostrare).

(da dimostrare); (da dimostrare). Proprietà delle trsposte Sino, K m,n e si K, llor vlgono le seguenti relzioni: 1) ( )= 2) (+)= + 3) ()= (d dimostrre); (d dimostrre). (dimostrt di seguito); DIM. 2): Devo dimostrre che l mtrice ugule ll

Dettagli

Le Matrici. 001 ( matrice unità)

Le Matrici. 001 ( matrice unità) Le Mtrici Un mtrice è un tbell di numeri o più in generle di elementi disposti quindi secondo righe e colonne. Le mtrici si indicno con le lettere miuscole dell lfbeto, gli elementi con quelle minuscole

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti Algebr linere Algebr Un lgebr è un sistem di segni in cui sono definite delle operzioni Algebr sclre Algebr dei vettori Algebr mtricile In lgebr mtricile un numero è chimto sclre Vettori Vettori vettore

Dettagli

; c. ; d nessuna delle precedenti In R 5 [x] distanza tra x e x 2 rispetto al prodotto scalare p, q = 1

; c. ; d nessuna delle precedenti In R 5 [x] distanza tra x e x 2 rispetto al prodotto scalare p, q = 1 Ing. erospzile e meccnic. Geometri e lgebr T. Prov del 08/01/2018 cod. 701385 Nome Cognome Mtricol 1. L conic definit d x 2 + y 2 4xy = 1 è: ellisse iperbole prbol; d un punto. 2. Le coordinte di rispetto

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica Esercizi di Geometri - Foglio Corso di Lure in Mtemtic A. Sottospzi ffini. Esercizio A.1 Esempi e non-esempi di sottospzi ffini Determinre quli dei seguenti insiemi sono sottospzi ffini (precisndo di qule

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Algebra lineare. Capitolo VETTORI

Algebra lineare. Capitolo VETTORI Cpitolo Algebr linere.. VETTORI In generle, nell geometri elementre un segmento AB è introdotto come l prte di rett compres tr i due punti A, B fissti su di ess, senz specificre un ordine tr gli estremi

Dettagli

COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006

COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006 COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006 Esercizio. Si consideri il seguente sistem tempo discreto: x(t + ) = Fx(t) + gu(t) = 0 0 0 x(t) + 0 u(t), 0 0 0 y(t) = Hx(t) = x(t), t Z 0 +, dove è un

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica:

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica: PROGRESSIONI ) Di un progressione geometric si conosce: 9 9 clcolre l rgione q. Possimo risolvere fcilmente il problem ricordndo l formul ce dà il termine n-esimo di un progressione geometric: n q n Applicimol

Dettagli

17.2. Esempio. Consideriamo il sistema lineare di 3 equazioni nelle 4 incognite (w, x, y, z)

17.2. Esempio. Consideriamo il sistema lineare di 3 equazioni nelle 4 incognite (w, x, y, z) Sistemi lineri Ricordimo che se p N llor col simolo I p indichimo l insieme {,,,,, p} Definizione Diremo sistem linere di m equzioni in n incognite un insieme di m equzioni lineri (cioè di o grdo) del

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

Basi di Algebra Lineare. Ivan Zivko

Basi di Algebra Lineare. Ivan Zivko Bsi di Algebr Linere Ivn Zivko Trigonometri Rdinti Nelle scienze l unità di misur più ust per glingoli non sono i grdi, bensì i rdinti. Vle l seguente relzione: 36 o = π rd Per trovre qulsisi ngolo in

Dettagli

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:...

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:... Sistemi di equzioni lgebriche lineri Un equzione lgebric linere in n incognite si present nell form: 1 1+ 2 2 +... + n n = b dove ( 1, 2,... n ) rppresentno le incognite, 1, 2,... n sono i coefficienti

Dettagli

MATRICI DETERMINANTI SISTEMI LINEARI TEORIA ED ESERCIZI

MATRICI DETERMINANTI SISTEMI LINEARI TEORIA ED ESERCIZI I PRTE LGEBR LINERE TEORI ED ESERCIZI DIPRTIMENTO DI GRRI FCOLT DI INGEGNERI DEI SISTEMI LOGISTICI E GRO- LIMENTRI LEZIONI DI GEOMETRI E LGEBR DISPENS MTRICI DETERMINNTI SISTEMI LINERI TEORI ED ESERCIZI

Dettagli

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie 33 possono essere introdotte in diverse mniere. Prim definizione di isometri Dicesi isometri un similitudine vente come rpporto di similitudine l unità, cioè vente k det A. Questo ci induce d ffermre che

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è :

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è : DETERMINANTI ESERCITAZIONE N 5 mrzo Ad ogni mtrice qudrt coefficienti in R ( o C o un qulsisi K cmpo) è ssocito un numero rele che or definimo,detto det(a),(d(a)) determinnte di A il determinnte di un

Dettagli

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n :

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n : Mtemtic II. Generlità sui sistemi lineri Un sistem linere è un sistem di m equzioni lineri (cioè di primo grdo) in n incognite,, n : n n b b m mn n m (*) Un soluzione del sistem linere è un n-upl di numeri

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile.

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile. Esercizio (). Il polinomio crtteristico dell mtrice A(t) è p(λ) λ (TrA)λ + deta ovvero p(λ) λ tλ t t il cui discriminnte è 6(t+)t. Sppimo che un mtrice A di ordine due non digonle è digonlizzbile se e

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010 LUISS Lure specilistic in Economi e Finn Anno Accdemico 9/ Corso di Metodi Mtemtici per l Finn Prof. Fusto Goi, Dr. Dvide Vergni Soluioni dell'esme scritto del 5/7/. Sino dti i due opertori Â, ˆB : R 3

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

G. Parmeggiani, 23/11/2018 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 6 (seconda parte)

G. Parmeggiani, 23/11/2018 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 6 (seconda parte) G. Prmeggini, 3//08 Algebr Linere,.. 08/09, Scuol di Scienze - Corsi di lure: Studenti: Sttistic per l economi e l impres Sttistic per le tecnologie e le scienze numero di MATRICOLA PARI Svolgimento degli

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Scuole italiane all estero - Bilingue italo-slovacca 2005

Scuole italiane all estero - Bilingue italo-slovacca 2005 www.mtefili.it Scuole itline ll estero - Bilingue itlo-slovcc 1) E dt l equzione y x + x + c dove i coefficienti,, c sono numeri reli non negtivi. Determinre tli coefficienti spendo che l prol p, che rppresent

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

Integrali impropri di funzioni di una variabile

Integrali impropri di funzioni di una variabile Integrli impropri di funzioni di un vribile. Le funzioni continue Considerimo nel seguito un delle piú importnti ppliczioni del teorem di uniforme continuitá delle funzioni continue su intervlli chiusi

Dettagli

2 Generalità sulle matrici

2 Generalità sulle matrici 2 Generlità sulle mtrici 21 Definizione e csi prticolri Definizione 21 Mtrice n m Un mtrice n m è un tbell rettngolre di n righe e m colonne i cui elementi sono numeri reli (o complessi) indicizzti con

Dettagli

Matematica A, Area dell Informazione. Complementi al testo

Matematica A, Area dell Informazione. Complementi al testo 1 Preinri Mtemtic A, Are dell Informzione.. 2001-2002, corso prof. Brdi Complementi l testo Proposizione 1 (Proprietà crtteristiche di sup e inf) Si A R un insieme non vuoto e si x R. Allor x = sup A se

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

ESPONENZIALI LOGARITMI

ESPONENZIALI LOGARITMI ESPONENZIALI LOGARITMI Prerequisiti: Conoscere e sper operre con potenze con esponente nturle e rzionle. Conoscere e sper pplicre le proprietà delle potenze. Sper risolvere equzioni e disequzioni. Sper

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari : Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se

Dettagli

Corso di Modelli Matematici in Biologia Esame del 22 Gennaio 2018

Corso di Modelli Matematici in Biologia Esame del 22 Gennaio 2018 Corso di Modelli Mtemtici in Biologi Esme del Gennio 08 Scrivere chirmente in test ll elborto: Nome Cognome numero di mtricol Risolvere tutti gli esercizi Tempo disposizione: DUE ORE E MEZZA Non e consentito

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri Clcolo integrle Integrli su intervlli illimitti Criteri di convergenz Integrli di funzioni non limitte Criteri di convergenz 2 Altri integrli impropri 2 2006 Politecnico di Torino Definizione Considerimo

Dettagli

). Poiché tale funzione è una parabola, il suo

). Poiché tale funzione è una parabola, il suo PROBLEMA ) Il rggio dell circonferenz di centro B vri tr i vlori: x b) ( x x ) ( PQCR) = ( ABC) ( APR) ( BPQ) = ( x) x = + 8 6 8 I vlori di x che rendono minim o mssim l funzione rendono, rispettivmente,

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

; c. ; d. ; b. 15. Quante soluzioni ha in R 3 il sistema AX=0 con A=? a 0; b 1; c ; d

; c. ; d. ; b. 15. Quante soluzioni ha in R 3 il sistema AX=0 con A=? a 0; b 1; c ; d Nome Cognome Mtricol 1. Qule di questi insiemi di vettori gener R 3 [x]? 0,1,x,x 2,x 3 x 2 +x 1; b x,x 2,x 3 2 x,x+,x 2 x,3+x+4x 2 +x 3 ; d nessuno. 2. Si A un mtrice 3x3 coefficienti reli. Allor deta

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Matematica corso base a.a.2018/19. Elementi di logica Algebra lineare

Matematica corso base a.a.2018/19. Elementi di logica Algebra lineare Mtemtic corso bse..08/9 Elementi di logic Algebr linere OBIETTIVO del corso Acquisire strumenti mtemtici utili per l nlisi e per l soluzione di problemi concreti L mtemtic è un linguggio rigoroso e non

Dettagli

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n)

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n) MTRICI: definizioni Considerimo delle tbelle di numeri, in cui ci si imbtte spesso in molti problemi di mtemtic o di scienze pplicte. Tle tbelle hnno un doppio ordinmento, per righe e per colonne, utilizzeremo

Dettagli