UNIVERSITA DEGLI STUDI DI PADOVA SCUOLA DI SCIENZE. Statistica per le tecnologie e le scienze

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "UNIVERSITA DEGLI STUDI DI PADOVA SCUOLA DI SCIENZE. Statistica per le tecnologie e le scienze"

Transcript

1 Corsi di lure: 1.1 Sino UNIVERSITA DEGLI STUDI DI PADOVA SCUOLA DI SCIENZE Sttistic per l economi e l impres Sttistic per le tecnologie e le scienze A(α) = α α e (α) = α + 1 dove α C. 1 α α () Per ogni α C si risolv il sistem linere A(α)x = (α). () Si A = A(i) l mtrice che si ottiene d A(α) ponendo α = i. Si trovi un decomposizione A = P T LU, con P un mtrice di permutzione, L un mtrice tringolre inferiore non singolre ed U un form ridott di Guss per A. (c) Si B = A() l mtrice che si ottiene d A(α) ponendo α =. Si clcoli l invers B 1 di B. 1.2 Sino { ( ) } + W =, R e B = { ( ) ( )} ; W è un sottospzio dello spzio vettorile delle mtrici 2 2 reli (N.B.: non se ne richiede l verific). () Si provi che B è un se di W. ( ( ) 2 ) () Si clcoli il vettore delle coordinte C B dell mtrice 2 4 rispetto ll se B Si A = i i ( ) 2 W 2 4 () Si trovi un decomposizione Q R -non-normlizzt per A. () Si trovi un decomposizione QR-normlizzt per A. (c) Si trovino le soluzioni i minimi qudrti del sistem Ax = dove = 6. 1

2 1.4 Si ( ) i 1 A(α) =, dove α C. 1 α () Per quli α C l mtrice A(α) è unitrimente digonlizzile? () Si A = A(i) l mtrice che si ottiene ponendo α = i. Si trovi un digonlizzzione unitri A = UDU H per A. (c) Si A = A(i) l mtrice che si ottiene ponendo α = i. Si scriv A nell form A = λ 1 P 1 + λ 2 P 2, con λ 1 e λ 2 utovlori di A, e P 1 e P 2 mtrici di proiezione su E A (λ 1 ) ed E A (λ 2 ) rispettivmente. 2.1 Si A(α) = ( α ) α i dove α C. () Per quegli α C per cui è possiile, si trovi un decomposizione A(α) = L(α)U(α) con L(α) un mtrice tringolre inferiore non singolre ed U(α) un form ridott di Guss per A(α). () Si A = A(i) l mtrice che si ottiene d A(α) ponendo α = i. Si trovi un decomposizione A = P T LU, con P un mtrice di permutzione, L un mtrice tringolre inferiore non singolre ed U un form ridott di Guss per A. (c) Si B = A() l mtrice che si ottiene d A(α) ponendo α =. Si trovino tutte le inverse destre di B. 2.2 Si consideri l ppliczione linere f : R 3 R 2 definit d f( ) ( ) 2 = + + c c R 3. c () Si determini l mtrice A ssocit d f rispetto lle si ordinte B = v 1 = 1 ; v 2 = ; v 3 = { ( ( e D = w 1 = ; w 1) 2 = )} 1 4 2

3 su dominio e codominio rispettivmente (N.B.: non si richiede di verificre che f è un ppliczione linere). () Dopo ver clcolto w = f( 1 ), si clcolino w 1 e w. 1 2i Si A = i 1. i 2i () Si trovi un decomposizione QR-normlizzt per A. () Si clcoli l proiezione ortogonle P C(A) (v) del vettore v = 1 sullo spzio delle colonne C(A) di A. () Si trovi un se B dello spzio delle righe R(A) di A. 2.4 Si α 2i A(α) = 4, dove α C. 2i () Si dic per quli α C l mtrice A(α) è unitrimente digonlizzile. () Si A = A(5) l mtrice che si ottiene ponendo α = 5. A è digonlizzile. Si trovino un mtrice non singolre S ed un mtrice digonle D tli che A = SDS 1. (c) (2 pt.) Si B = A(4) l mtrice che si ottiene ponendo α = 4. Si dic, motivndo l rispost, se B è digonlizzile oppure no. 3.1 Si 2 2α 2 A(α) = α dove α C. 8 () Si A = A() l mtrice che si ottiene d A(α) ponendo α =. Si trovino tutte le inverse sinistre di A. 3

4 () Per quegli α C per cui è possiile, si trovi un decomposizione A(α) = L(α)U(α) con L(α) un mtrice tringolre inferiore non singolre ed U(α) un form ridott di Guss per A(α). (c) per quegli α C per cui non esiste un decomposizione A(α) = L(α)U(α), si trovi un decomposizione A(α) = P T L(α)U(α), con P un mtrice di permutzione, L(α) un mtrice tringolre inferiore non singolre ed U(α) un form ridott di Guss per A(α). 3.2 Si W = +, R W è un sottospzio di R 3 (N.B.: non se ne richiede l verific). () Si provi che S = v 1 = 2 ; v 2 = 4 ; v 3 = è un insieme di genertori di W. () Si trovi un se B di W contenut in S. (c) Si verifichi che l funzione f : W R 2 definit d f( + ) ( = + W ) è un ppliczione linere. 1 i i Si A = 2i 2 2 2i. 1 i i 7 () Si trovi un decomposizione QR-normlizzt per A. () Si trovi un se B dello spzio delle righe R(A) di A. (c) Si trovi un se C dello spzio nullo N(A) di A. 3.4 Si 3α 1 A(α) = 4, dove α C

5 () Si dic per quli α C l mtrice A(α) è unitrimente digonlizzile. () Si A = A(1) l mtrice che si ottiene ponendo α = 1. Si scriv A nell form A = λ 1 P 1 + λ 2 P 2, con λ 1 e λ 2 utovlori di A, e P 1 e P 2 mtrici di proiezione su E A (λ 1 ) ed E A (λ 2 ) rispettivmente. 4.1 Sino 1 α 2 α A(α) = 1 α α e = dove α C. 2 2α 2 1 α () Per ogni α C si risolv il sistem linere A(α)x = (α). () Si A = A(2i) l mtrice che si ottiene d A(α) ponendo α = 2i. Si trovi un decomposizione A = LU, con L un mtrice tringolre inferiore non singolre ed U un form ridott di Guss per A. (c) Si B = A() l mtrice che si ottiene d A(α) ponendo α =. Si clcoli l invers B 1 di B. 4.2 Si consideri l ppliczione linere f : R 2 R 2 definit d f ( ( ) ) = ( ) ( ) R 2. () Si determini l mtrice A ssocit d f rispetto lle si ordinte { ( ) ( )} { ( ( )} B = v 1 = ; v 1 2 = e D = w 1 = ; w 1) 2 = 13 su dominio e codominio rispettivmente (N.B.: non si richiede di verificre che f è un ppliczione linere). ( () Si trovino tutti i vettori v = R ) 2 soddisfcenti entrme le seguenti due condizioni: ( 1 1 f(v) è ortogonle v 1 = rispetto l prodotto interno stndrd di R 1) 2, 2 v 1 = 3. 5

6 1 2i 4.3 Si A = 1 2i i 2. i 2 () Si trovi un decomposizione Q R -non-normlizzt per A. () Si trovi un decomposizione QR-normlizzt per A. (c) Si trovino le soluzioni i minimi qudrti del sistem Ax = dove = Si i α A(α) = i, dove α C. α () Si dic per quli α C l mtrice A(α) è digonlizzile. () Si dic per quli α C l mtrice A(α) è unitrimente digonlizzile. (c) Si A = A(2i) l mtrice che si ottiene ponendo α = 2i. Si trovino un mtrice non singolre S ed un mtrice digonle D tli che A = SDS α 5.1 Si A(α) = 1 α i 2α, dove α C. α i α + i () Per quegli α C per cui A(α) è non singolre, si clcoli l invers A(α) 1 di A(α) () Si A = A(i) l mtrice che si ottiene d A(α) ponendo α = i. Si trovino un se B dello spzio delle colonne C(A) di A ed un se D dello spzio delle righe R(A) di A. (c) Si consideri l se B dello spzio delle colonne C(A) di A trovt l punto (), e si pensi B come se ordint. Si clcoli il vettore delle coordinte ( C B ) del vettore C (A) rispetto B. 2i 2i 6

7 5.2 Sino V = {( ) },, c R c lo spzio vettorile delle mtrici 2 2 reli tringolri superiori e {( ) ( ) ( )} B = ; ;. 1 1 () Si provi che B è un se di V. () Si determini l mtrice A ssocit ll ppliczione linere f : V R 2 definit d ( ( ) ) ( ) ( ) + f = V c c c {( ( 1 rispetto lle si ordinte B sul dominio e D = ; 1) 1)} sul codominio (N.B.: non si richiede di verificre che f è un ppliczione linere). 1 i Si A = i 1 i 2 2i 2. 1 i 6 () Si trovi un decomposizione QR-normlizzt per A. () Si trovi un decomposizione A = P T LU, con P un mtrice di permutzione, L un mtrice tringolre inferiore non singolre ed U un form ridott di Guss per A. 5.4 Si i 1 α A(α) = 1 i, dove α C. α () Si dic per quli α C l mtrice A(α) è digonlizzile. () Si dic per quli α C l mtrice A(α) è unitrimente digonlizzile. (c) Si A = A() l mtrice che si ottiene ponendo α =. Si scriv A nell form A = λ 1 P 1 + λ 2 P 2, con λ 1 e λ 2 utovlori di A, e P 1 e P 2 mtrici di proiezione su E A (λ 1 ) ed E A (λ 2 ) rispettivmente. 7

G. Parmeggiani, 23/11/2018 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 6 (seconda parte)

G. Parmeggiani, 23/11/2018 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 6 (seconda parte) G. Prmeggini, 3//08 Algebr Linere,.. 08/09, Scuol di Scienze - Corsi di lure: Studenti: Sttistic per l economi e l impres Sttistic per le tecnologie e le scienze numero di MATRICOLA PARI Svolgimento degli

Dettagli

Elementi di Calcolo Matriciale

Elementi di Calcolo Matriciale Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 7 Ottobre Elementi di Clcolo Mtricile F. Cliò Mtrici: Definizioni e Simbologi Lezione 7 Ottobre Elementi di Clcolo Mtricile

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Candidato: Matricola: Sede locale: Per la Commissione 1B 2B 3B Parte A Parte B Totale

Candidato: Matricola: Sede locale: Per la Commissione 1B 2B 3B Parte A Parte B Totale FACOLTÀ DI INGEGNERIA - CORSO DI LAUREA IN INGEGNERIA INFORMATICA Esme di MATEMATICA B (IN TELECONFERENZA), TITOLARE: A. LANGUASCO) mrzo 00 (Secondo compitino,.. 001/00) Cndidto: Mtricol: Sede locle: Per

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

Richiami sulle matrici (TITOLO)

Richiami sulle matrici (TITOLO) Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione prile Introduzione lle trsformzioni F. Cliò Richimi sulle mtrici (TITOLO) Lezione prile Trsformzioni Mtrici: Definizioni

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

5. Quanti blocchi ha la forma di Jordan di f(x, y, z, s, t) = (0, y + z, y + z, t, 0)?

5. Quanti blocchi ha la forma di Jordan di f(x, y, z, s, t) = (0, y + z, y + z, t, 0)? Ing. erospzile e meccnic. Geometri e lgebr T. Prov del 24/01/2018 cod. 8919280 Nome Cognome Mtricol 1. Il rngo di 1 2 0 0 2 0 è: 2 4 3 ; d 5. 1 2 0 2. Le coordinte di 1, 1, 0 rispetto ll bse di C 3 formt

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

17.2. Esempio. Consideriamo il sistema lineare di 3 equazioni nelle 4 incognite (w, x, y, z)

17.2. Esempio. Consideriamo il sistema lineare di 3 equazioni nelle 4 incognite (w, x, y, z) Sistemi lineri Ricordimo che se p N llor col simolo I p indichimo l insieme {,,,,, p} Definizione Diremo sistem linere di m equzioni in n incognite un insieme di m equzioni lineri (cioè di o grdo) del

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

; c. ; d nessuna delle precedenti In R 5 [x] distanza tra x e x 2 rispetto al prodotto scalare p, q = 1

; c. ; d nessuna delle precedenti In R 5 [x] distanza tra x e x 2 rispetto al prodotto scalare p, q = 1 Ing. erospzile e meccnic. Geometri e lgebr T. Prov del 08/01/2018 cod. 701385 Nome Cognome Mtricol 1. L conic definit d x 2 + y 2 4xy = 1 è: ellisse iperbole prbol; d un punto. 2. Le coordinte di rispetto

Dettagli

5. Autovalori e autovettori di matrici reali.

5. Autovalori e autovettori di matrici reali. 5 Autovlori e utovettori di mtrici reli Definizione 5 Dt un mtrice A M n si dice utovlore di A un numero rele tle che X per cui n, n, AX = λ X L mtrice X si dice utovettore reltivo ll'utovlore λ λ Vicevers

Dettagli

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile.

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile. Esercizio (). Il polinomio crtteristico dell mtrice A(t) è p(λ) λ (TrA)λ + deta ovvero p(λ) λ tλ t t il cui discriminnte è 6(t+)t. Sppimo che un mtrice A di ordine due non digonle è digonlizzbile se e

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n Coniche e qudriche Un qudric è il luogo degli zeri in E n, lo spzio euclideo di dimensione n, di un polinomio di grdo nelle vribili,, n Polinomi proporzionli dnno luogo ll stess qudric Se n = un qudric

Dettagli

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti Algebr linere Algebr Un lgebr è un sistem di segni in cui sono definite delle operzioni Algebr sclre Algebr dei vettori Algebr mtricile In lgebr mtricile un numero è chimto sclre Vettori Vettori vettore

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Geometria BAER Canale I Esercizi 13

Geometria BAER Canale I Esercizi 13 Geometri BAER Cnle I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che bbimo ftto quest prte un po in frett, m si può sempre provre. Esercizio. Si scrivno le equzioni delle prbole

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

Esercizi estivi per la classe seconda

Esercizi estivi per la classe seconda Esercii estivi per l clsse second ) Risolvere le seguenti disequioni: [nessun soluione] R f) R i) l) n) ) Risolvere i seguenti sistemi di disequioni: ) Risolvi i seguenti sistemi con il metodo di sostituione:,,,

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgno cortesemente i seguenti esercizi. METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 GIUGNO 5 ESERCIZIO (PUNTEGGIO: 6/) Si clcoli l integrle SOLUZIONE P sen( x) x + x + d x. Fccimo l sostituzione

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Proiettività della Retta e del Piano.

Proiettività della Retta e del Piano. Introduzione. In queste note proponimo l clssificzione delle proiettività per l rett proiettiv ed il pino proiettivo su un corpo lgebricmente chiuso. Nel cso dell rett studieremo nche il cso del corpo

Dettagli

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è :

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è : DETERMINANTI ESERCITAZIONE N 5 mrzo Ad ogni mtrice qudrt coefficienti in R ( o C o un qulsisi K cmpo) è ssocito un numero rele che or definimo,detto det(a),(d(a)) determinnte di A il determinnte di un

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 22 SETTEMBRE 25 Si svolgno cortesemente i seguenti esercizi ESERCIZIO (PUNTEGGIO: 6/3) Si clcoli l integrle con A= γ 2z 2 +, SOLUZIONE L funzione integrnd

Dettagli

Matrici. (Tabelle di elementi disposti su m righe e n colonne) Di particolare interesse le matrici quadrate (m=n): Es. (m=n=3):

Matrici. (Tabelle di elementi disposti su m righe e n colonne) Di particolare interesse le matrici quadrate (m=n): Es. (m=n=3): Mtrici (Tbelle di elementi disposti su m righe e n colonne) Di prticolre interesse le mtrici qudrte (m=n): Es. (m=n=3): V = 11 21 31 12 22 32 13 23 33 Mtrici Un vettore n componenti (coordinte), cioè pprtenente

Dettagli

CONDIZIONE NECESSARIA E SUFFICIENTE perché il sottoinsieme W di V sia sottospazio di V è che sia:

CONDIZIONE NECESSARIA E SUFFICIENTE perché il sottoinsieme W di V sia sottospazio di V è che sia: SPAZI VETTORIALI CONDIZIONE NECESSARIA E SUFFICIENTE perché il sottoinsieme W di V si sottospzio di V è che si: (λ w + µ u) V per ogni u, w V e ogni λ, µ R CONDIZIONE NECESSARIA (m NON SUFFICIENTE) perché

Dettagli

Basi di Algebra Lineare. Ivan Zivko

Basi di Algebra Lineare. Ivan Zivko Bsi di Algebr Linere Ivn Zivko Trigonometri Rdinti Nelle scienze l unità di misur più ust per glingoli non sono i grdi, bensì i rdinti. Vle l seguente relzione: 36 o = π rd Per trovre qulsisi ngolo in

Dettagli

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1 MTRICI E DETERMINNTI CENNI SUI SISTEMI LINERI ngel Dontiello Considerimo un insieme di numeri reli rppresentti tr prentesi qudre o tonde n n ij m m mn ( ) [ ] ij i,,m j,,n Si definisce mtrice un tbell

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi su spazi di funzioni, convergenza uniforme

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi su spazi di funzioni, convergenza uniforme Corso di Metodi Mtemtici per l Ingegneri A.A. 2016/2017 Esercizi su spzi di funzioni, convergenz uniforme Mrco Brmnti Politecnico di Milno October 7, 2016 A. Esercizi su spzi vettorili, spzi vettorili

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Elementi di strutturistica cristallina Ii

Elementi di strutturistica cristallina Ii Chimic fisic superiore Modulo Elementi di strutturistic cristllin Ii Sergio Brutti Reticoli idimensionli I reticoli possiili in un tssellzione dello spzio idimensionle sono 5. Oliquo primitivo 2. Rettngolre

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI CAGLIARI Fcoltà di Ingegneri Corso di Lure Specilistic in Ingegneri per l Ambiente e il Territorio TESINA DI CALCOLO NUMERICO Anlisi dell errore nei metodi di risoluzione dei

Dettagli

0.1 Teorema di Lax-Milgram

0.1 Teorema di Lax-Milgram 0. Teorem di Lx-Milgrm Definizione. (Form sesquilinere) Si H uno spzio di Hilbert su C. Un form sesquilinere sul cmpo C è un ppliczione : H H C linere nell prim componente e ntilinere nell second (cioè

Dettagli

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:...

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:... Sistemi di equzioni lgebriche lineri Un equzione lgebric linere in n incognite si present nell form: 1 1+ 2 2 +... + n n = b dove ( 1, 2,... n ) rppresentno le incognite, 1, 2,... n sono i coefficienti

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MTRICI E DETERMINNTI di vinenzo sudero 1 DEFINIZIONI Per mtrie si intende un tell di elementi ordinti per righe e per olonne Di un mtrie oorre speifire il numero di righe, di olonne e l insieme ui pprtengono

Dettagli

Matematica corso base a.a.2018/19. Elementi di logica Algebra lineare

Matematica corso base a.a.2018/19. Elementi di logica Algebra lineare Mtemtic corso bse..08/9 Elementi di logic Algebr linere OBIETTIVO del corso Acquisire strumenti mtemtici utili per l nlisi e per l soluzione di problemi concreti L mtemtic è un linguggio rigoroso e non

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z)

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z) Qudriche in E (C) L equione crtesin di un qudric in coordinte non omogenee (,,) Q:, +, +, +, +, +, +,4 + +,4 +,4 + 4,4. in coordinte omogenee (,,, 4 ) Q:, +, +, +, +, +, + +,4 4 + +,4 4 +,4 4 + 4,4 4.

Dettagli

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ;

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ; Cpitolo Rdicli Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli qundo è possibile clcolrle) 9 9 9 00 m ) n ) o ) 0, 0 0, 09 0, 000 9 0, Determin le seguenti rdici

Dettagli

Istituto Tecnico Industriale E.Fermi Programma di matematica classe II I Anno scolastico 2017/2018

Istituto Tecnico Industriale E.Fermi Programma di matematica classe II I Anno scolastico 2017/2018 Istituto Tecnico Industrile E.Fermi Progrmm di mtemtic clsse II I Anno scolstico / Insegnnte : Mrco Cmi Divisione tr due polinomi : Regol di Ruffini. Teorem del resto. Scomposiione di un polinomio con

Dettagli

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5).

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5). Corso di Lure in Ingegneri Informti (A-Co, J-Pr) - Ingegneri Elettroni (A-Co, J-Pr) - Ingegneri Industrile (F-O) - Ingegneri Gestionle - Ingegneri Elettri - Ingegneri Meni - Ingegneri REA Prov sritt di

Dettagli

ISTITUTO TECNICO INDUSTRIALE "E. FERMI" LUCCA

ISTITUTO TECNICO INDUSTRIALE E. FERMI LUCCA ISTITUTO TECNICO INDUSTRIALE "E. FERMI" LUCCA Anno Scolstico / Progrmm di MATEMATICA svolto dll clsse second se. A INSEGNANTE: MUSUMECI LUCIANA Divisione tr due polinomi.regol di Ruffini. Teorem del resto.

Dettagli

Sistemi lineari Sistemi lineari quadrati

Sistemi lineari Sistemi lineari quadrati Sistemi lineri Sistemi lineri qudrti Definizione e crtteristiche di sistem qudrto (/) Dti un mtrice qudrt A(n n) ed un vettore (colonn) b d n componenti; Determinimo in modo tle che: A b Quest relzione

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II Ingegneri Elettric Politecnico di Torino Luc Crlone ControlliAutomticiI LEZIONE II Sommrio LEZIONE II Sistemi lineri e proprietà di unicità Concetto di Stilità Stilità intern ed estern Criterio di Routh

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, SGI, A.A. 2010/2011, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, SGI, A.A. 2010/2011, GEMMA PARMEGGIANI ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, SGI, A.A. /, GEMMA PARMEGGIANI Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata via Trieste, 63 353 Padova Programma del corso.

Dettagli

Numerica e aritmetica dei calcolatori. Introduzione

Numerica e aritmetica dei calcolatori. Introduzione NUC Cpitolo Ivn Zivko Introduzione Un mtrice si può descrivere come un tbell ordint di elementi, ognuno dei quli h un posizione ben precis. M 4 7 5 8 3 6 9 NUC Docente: Ivn Zivko Introduzione Se il numero

Dettagli

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno Corso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it I erminnti. Il prodotto vettorile. 11 Gennio 2016 Indice 1 Determinnti di mtrici 2 2 2 1.1 Clcolo del erminnte.

Dettagli

AM : Tracce delle lezioni- IV Settimana

AM : Tracce delle lezioni- IV Settimana AM0 04-5: Trcce delle lezioni- IV Settimn SUCCESSIONI CONVERGENTI in uno SPAZIO NORMATO Si (E,. ) spzio normto. Sino x k, x E. Allor x k k x x k x k 0 (i) u k, v k E, u k u, v k v tu k + sv k tu + sv t,

Dettagli

1. Elementi di analisi funzionale Esercizi

1. Elementi di analisi funzionale Esercizi . Elementi di nlisi funzionle Esercizi http://www.cirm.unibo.it/~brozzi/mi/pdf/mi-cp.-ese.pdf.. Spzi vettorili.. Spzi vettorili normti.-. Dimostrre l diseguglinz tringolre in C n reltivmente ll norm (

Dettagli

Materiale didattico relativo al corso di Matematica corso base Prof. G. Rotundo a.a.2013/14

Materiale didattico relativo al corso di Matematica corso base Prof. G. Rotundo a.a.2013/14 Mterile didttico reltivo l corso di Mtemtic corso bse Prof. G. Rotundo..03/4 ATTENZIONE: questo mterile contiene i lucidi utilizzti per le lezioni. NON sostituisce il libro, che deve essere comunque consultto

Dettagli

1 Curve, superfici, sottovarietà.

1 Curve, superfici, sottovarietà. Complementi ed Esercizi di Geometri Differenzile - A. Smbusetti 1 1 Curve, superfici, sottovrietà. Definizioni 1.1 (Intorni, insiemi perti, domini) Si S un sottoinsieme di R n : un intorno rettngolre perto

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA SRCIZI DI ALGBRA LINAR COMPLMNTI DI GOMTRIA Foglio 3 sercizio 1. Determinare la decomposizione LU della matrice reale simmetrica A = 1 2 1 2 5 3 1 3 4 sercizio 2. Determinare la decomposizione LU della

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Isi E.Fermi Programma di matematica classe II L. Anno scolastico 2017/2018

Isi E.Fermi Programma di matematica classe II L. Anno scolastico 2017/2018 Isi E.Fermi Progrmm di mtemtic clsse II L Prof.ss Tcchi Luci Anno scolstico / Ripsso: Polinomi ed operioni con essi. Prodotti notevoli. Scomposiioni. Frioni lgeriche. Equioni di primo grdo intere letterli

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lucc Istituto Tecnico settore Tecnologico Anno scolstico / Progrmm di MATEMATICA Clsse : II C Insegnnte : Podestà Tiin Divisione tr due polinomi.regol di Ruffini. Teorem del resto. Scomposiione

Dettagli

Polo Scientifico Tecnico Professionale Settore Tecnico E.Fermi Programma di matematica classe II D e indicazioni per il recupero

Polo Scientifico Tecnico Professionale Settore Tecnico E.Fermi Programma di matematica classe II D e indicazioni per il recupero Polo Scientifico Tecnico Professionle Settore Tecnico E.Fermi Progrmm di mtemtic clsse II D e indicioni per il recupero Anno scolstico / Frioni lgeriche e reltive operioni. Le funioni polinomili. Il Teorem

Dettagli

DEFINIZIONE. Sia a R. Si definisce valore assoluto (o modulo) di a il numero

DEFINIZIONE. Sia a R. Si definisce valore assoluto (o modulo) di a il numero CAPITOLO : ALGEBRA E GEOMETRIA IN R R ED R VALORE ASSOLUTO DI UN NUMERO REALE PROPOSIZIONE Si { } ( mx ) R fissto Allor se se < DIMOSTRAZIONE Si < Allor > ( ) > e > > Si Allor Si > Allor > e > > Concludimo

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI I ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico -7 MATEMATICA Clsse E Istituto tecnico tecnologico Progrmm svolto Insegnnte : Ptrii Consni ALGEBRA: Regol di Ruffini. Teorem del resto. Scomposiione

Dettagli

Scuola estiva di Matematica Applicata

Scuola estiva di Matematica Applicata Scuol estiv di Mtemtic Applict 13-18 Giugno, 2016, Milno DALLA GEOMETRIA ANALITICA ALLA GEOMETRIA PARAMETRICA Strumenti di se e ppliczioni Frnc Cliò, Elen Mrchetti Diprtimento di Mtemtic Politecnico di

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

Le Matrici. 001 ( matrice unità)

Le Matrici. 001 ( matrice unità) Le Mtrici Un mtrice è un tbell di numeri o più in generle di elementi disposti quindi secondo righe e colonne. Le mtrici si indicno con le lettere miuscole dell lfbeto, gli elementi con quelle minuscole

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Diario delle lezioni Matematica per Scienze Biologiche e Biotecnologie

Diario delle lezioni Matematica per Scienze Biologiche e Biotecnologie Dirio delle lezioni 2015-16 Mtemtic per Scienze Biologiche e Biotecnologie NOTA. A cus del numero limitto di ore le dimostrzioni sono stte ridotte l minimo. In prticolre prim del clcolo differenzile tutti

Dettagli

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI I NUMERI REALI E I RADICALI Recupero RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI COMPLETA Risolvi l disequzione ( ). ( ) ( ) ( ) Elimin le prentesi clcolndo il prodotto. Applic l regol

Dettagli

Polinomi ortogonali. Alvise Sommariva. Università degli Studi di Padova Dipartimento di Matematica. 23 marzo 2015

Polinomi ortogonali. Alvise Sommariva. Università degli Studi di Padova Dipartimento di Matematica. 23 marzo 2015 Polinomi ortogonli Alvise Sommriv Università degli Studi di Pdov Diprtimento di Mtemtic 23 mrzo 2015 Alvise Sommriv Polinomi ortogonli 1/ 30 Definizione (Spzio di Hilbert) Uno spzio di Hilbert è uno spzio

Dettagli

Polinomi ortogonali. Alvise Sommariva. Università degli Studi di Padova Dipartimento di Matematica. 19 marzo 2014

Polinomi ortogonali. Alvise Sommariva. Università degli Studi di Padova Dipartimento di Matematica. 19 marzo 2014 Polinomi ortogonli Alvise Sommriv Università degli Studi di Pdov Diprtimento di Mtemtic 19 mrzo 2014 Alvise Sommriv Polinomi ortogonli 1/ 31 Considerimo lo spzio normto delle funzioni reli misurbili (cf.

Dettagli

La prima forma quadratica fondamentale

La prima forma quadratica fondamentale Cpitolo 1 L prim form qudrtic fondmentle Si M un superficie immers nello spzio euclideo R 3. Osservimo che in R 3, pensto come spzio euclideo, vi è un prodotto sclre nturle h(x 1 x 2 x 3 ) (y 1 y 2 y 3

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010 LUISS Lure specilistic in Economi e Finn Anno Accdemico 9/ Corso di Metodi Mtemtici per l Finn Prof. Fusto Goi, Dr. Dvide Vergni Soluioni dell'esme scritto del 5/7/. Sino dti i due opertori Â, ˆB : R 3

Dettagli

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n :

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n : Mtemtic II. Generlità sui sistemi lineri Un sistem linere è un sistem di m equzioni lineri (cioè di primo grdo) in n incognite,, n : n n b b m mn n m (*) Un soluzione del sistem linere è un n-upl di numeri

Dettagli

Algebra lineare. Capitolo VETTORI

Algebra lineare. Capitolo VETTORI Cpitolo Algebr linere.. VETTORI In generle, nell geometri elementre un segmento AB è introdotto come l prte di rett compres tr i due punti A, B fissti su di ess, senz specificre un ordine tr gli estremi

Dettagli

P (a,a) PROBLEMA 10 . C

P (a,a) PROBLEMA 10 . C PROBLEMA 10 4 FILI LUNGHI CONDUTTORI SONO TRA LORO PARALLELI E DISPOSTI AI VERTICI DI UN QUADRATO DI LATO = 0 cm; IN OGNI FILO CIRCOLA LA CORRENTE i = 0 A, CON I VERSI MOSTRATI IN FIGURA A) CALCOLARE IL

Dettagli

MATRICI DETERMINANTI SISTEMI LINEARI TEORIA ED ESERCIZI

MATRICI DETERMINANTI SISTEMI LINEARI TEORIA ED ESERCIZI I PRTE LGEBR LINERE TEORI ED ESERCIZI DIPRTIMENTO DI GRRI FCOLT DI INGEGNERI DEI SISTEMI LOGISTICI E GRO- LIMENTRI LEZIONI DI GEOMETRI E LGEBR DISPENS MTRICI DETERMINNTI SISTEMI LINERI TEORI ED ESERCIZI

Dettagli

Metodo degli elementi finiti in una dimensione Condizioni di Dirichlet omogenee

Metodo degli elementi finiti in una dimensione Condizioni di Dirichlet omogenee Metodo degli elementi finiti in un dimensione Condizioni di Dirichlet omogenee Luci Gstldi Diprtimento di Mtemtic, http://www.ing.unibs.it/gstldi/ Indice 1 Problemi ellittici del secondo ordine Formulzione

Dettagli

Metodo degli elementi finiti in una dimensione

Metodo degli elementi finiti in una dimensione Metodo degli elementi finiti in un dimensione Luci Gstldi DICATAM - Sez. di Mtemtic, http://luci-gstldi.unibs.it Indice 1 Problemi di diffusione-rezione del secondo ordine Formulzione debole Metodo di

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

Progetto Lauree Scientifiche Liceo Classico L. Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Progetto Lauree Scientifiche Liceo Classico L. Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Progetto Luree Scientifiche Liceo Clssico L. Ariosto, Ferrr Diprtimento di Mtemtic Università di Ferrr 4 Gennio 0 Concetti importnti d (ri)vedere funzione vettore mtrice cenni di clcolo combintorio probbilità:

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, SGI, A.A. 2013/2014, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, SGI, A.A. 2013/2014, GEMMA PARMEGGIANI ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, SGI, A.A. 3/4, GEMMA PARMEGGIANI Università degli Studi di Padova Dipartimento di Matematica via Trieste, 63 353 Padova Programma del corso. Nota : Matrici

Dettagli

MATEMATICA MATEMATICA FINANZIARIA

MATEMATICA MATEMATICA FINANZIARIA MATEMATICA e MATEMATICA FINANZIARIA.. 7-8 Corso di lure in Economi Aziendle Fscicolo n. Alger linere delle mtrici Operzioni con le mtrici. Determinnte di un mtrice qudrt Mtrice invers Rngo di un mtrice

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2016/17. Istituto tecnico settore tecnologico. Classe II H

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2016/17. Istituto tecnico settore tecnologico. Classe II H ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico: /7 Progrmm di mtemtic Istituto tecnico settore tecnologico. Clsse II H Disequioni di primo grdo sistemi di disequioni e disequioni frtte. Segno

Dettagli

PREFERENZE COME RELAZIONI D ORDINE

PREFERENZE COME RELAZIONI D ORDINE PREFERENZE COME RELAZIONI D ORDINE RELAZIONI Si S un insieme finito. Un relzione inri R è un sottoinsieme dell insieme prodotto crtesino S S, insieme delle coppie ordinte di elementi di S: R S S x,y R

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

13. Metodi Hilbertiani per la soluzione di problemi ai limiti

13. Metodi Hilbertiani per la soluzione di problemi ai limiti 13. Metodi Hilbertini per l soluzione di problemi i limiti Nell Sezione precedente bbimo sviluppto, nche se in form estremmente concis, lcuni spetti dell teori degli opertori lineri fr spzi normti, soffermndoci

Dettagli